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ABSTRACT 

Morse, Alfred Stephen. Ph.D., M u e  University, June 1967. 
On the Analysis and Synthesis of Cont ro l  Systems U s i n R  a Warst Case 
Disturbance Approach. MaJor Professor: Violet  B. Haas. 

I n  this thesis ,  a study is made of two problems resul t ing f r o m  a 

"worst case disturbance" approach t o  the design of disturbed control 

systems. Using t h i s  approach, an e r ro r  analysis problem is  formulated. 

The problem i s  t o  determine the worst case (maximum) value of a system 

er ror  index due to  a bounded disturbance act ing on a l inear  system. It 

it shown t h a t  t h i s  may be accomplished by computing the maximum value 

of a scalar  function of known form with respect t o  a s e t  of parameters 

which are res t r ic ted  i n  magnitude. 

is developed which may be used i n  computing the maximum value of this 

function. 

An e f f i c i en t  comptltational algorithm 

The formulation of a worst case disturbance min-max problem is 

presented. 

i n  the smallest worst case value of a system error index. 

relationship between t h i s  min-max problem and the d i f f e ren t i a l  game i s  

indicated. 

The problem i s  t o  determine a control ler  which will resu l t  

The 

Min-max problems f o r  general l i nea r  systems and three 

different  types of perfonnancc indices arc  investigated. 

t h a t  the min-max 6olutions of two of these problems do not always exis t .  

I n  the th i rd  problem investigated, which involves a bounded aontrol and a 

bounded disturbance, the complete min-max solution i s  found. 

examples, demonstrating the rest;lfs f o r  a l l  three problems, are presented. 

It is ~hom 

Specific 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

A basic engineering task  of continuing importance i s  the problem of 

adequately controlling a system i n  the presence of an unknown external 

disturbance. 

engineer must take into account not only the  physical plant  t o  be 

controlled, but also the  external disturbance which m y  act  QD it. 

I n  designing a controller t o  accomplish t h i s  task, the 

Since the actual  disturbance i s  not known a t  the design stsge, one must. 

make some reasonable assumptions about the disturbance i n  order t o  

carry out the design of the  controller. 

The Worst Case Disturbance Approach i s  an in tu i t i ve ly  appealing 

way of dealing with t h i s  problem without requiring unreasonable or  

overly r e s t r i c t ive  assumptions about the disturbance. 

t h i s  approach may be outlined as follows. F i r s t  it i s  assumed tha t  the 

I n  general terms, 

disturbance i s  sui tably restrained (i. e., magnitude limited). 

a given controller,  the  worst possible (maximum) value of a prescribed 

system error  index due t o  t h i s  disturbance i s  computed. This value is 

Next, fo r  

used t o  judge the qual i ty  of the system. 

control ler  i s  altered and the technique reapplied. 

continues u n t i l  a controller i s  found which will keep the corresponding 

worst case value of the  system error index a t  an acceptably low level.  

If it i s  too large,  the 

This process 
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n A controller determined i n  t h i s  manner i s  referred t o  as  a 

disturbance” control. 

worst case 

There are t w o  important research problems associated with the worst 

case disturbance approach. 

Analysis Problem) i s  the problem of actual ly  determining the worst case 

value of a system er ror  index when the system i s  under the influence of 

a given controller. The second (the Min-Max Problem) i s  the  problem of 

synthesizing a controller which w i l l  r esu l t  i n  the  smallest worst caae 

value of  a given system error  index. The research reported on the 

following pages has been directed towards the understanding of and 

possible solution t o  these two problems. 

The f i rs t  (the Worst Case Disturbance 

1 . 2  Alternate Approaches 

There a re  several a l ternate  approaches which one might consider i n  

designing a control system in  the presence o f  a disturbance. 

the most straightforward is  t o  assume that the disturbance i s  of a 

specific form, say a sinusoid o r  a step [l]. 

designed t o  make the  value of a system performance index, which i s  

determined using the  assumed disturbance, as  small as required. 

Unfortunately, information suff ic ient  t o  enable the designer t o  make such 

an assumption about t he  disturbance i s  often unavailable, thus l imiting 

the general use of  t h i s  approach. 

Probably 

A controller can then be 

A second approach t o  the problem iB t o  assume tha t  the disturbance 

can be represented as  a random variable [2,33. 

control i s  designed t o  make some s t a t i s t i c a l  average of  the value of a 

system er ror  index as  small as required. 

approach often leads t o  systematic methods for  dealing with an unknown 

I n  this instance, the  

Although the  s t a t i s t i c a l  

I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
1 
1 
I 
1 
I 
1 
I 
I 
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disturbance, the approach seems t o  have several f'undamental drawbacks. 

F i r s t ,  an adequate description o f  the disturbance, which i s  usually 

assumed t o  be available, i s  not always known. 

pmper t les  of the  random process are  known, they may be of a type not 

amenable t o  s t a t i s t i c a l  methods (i. e., non-Gaussian, nonstationary 

random processes). 

s t a t i s t i c a l  average o f  the  value of a system er ror  index i s  not a 

meaningful indicator of system performance. Whereas the use of such 

c r i t e r i a i s  of recognized value i n  communication system design, t h e i r  

use i n  control system design i s  d i f f i c u l t  t o  justif'y. 

Even i f  some of the 

A more basic cr i t ic ism of  the approach i s  tha t  a 

The most significant cri t icism of the worst case disturbance 

approach i s  tha t  it may be overly conservative. 

is cer tainly valid i n  some instances, there are  cer ta inly problems i n  

which a very conservative approach i s  jus t i f ied ;  i . e . ,  problems in  

which human l i f e  o r  very expensive equipment i s  a t  stake. 

Although t h i s  cr i t ic ism 

The most important advantage of the worst case disturbance approach 

i s  tha t  it provides the designer with an upper bound for  the value of  a 

system er ror  index which he knows w i l l  not be exceeded. 

controller i s  designed so t ha t  t h i s  upper bound i s  a23 acceptably low 

Thus, i f  the 

value, the Besigner knows that the system will operate properly i n  the 

presence of any disturbance. Hence one may place a much larger  degree 

of confidence i n  a worst case disturbance controller than i n  a controller 

deeimed using either of the  tm previously discussed approaches. 

1.3 Background 

The formulation of the worst case disturbance approach fo r  control 

systems is due t o  Howard [4,5]. I n  h i s  work he formulated a general 
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worst case e r ror  analysis problem and used var ia t ional  techniques ~ 6 3  

and reachable zone theory [q t o  study it. Saridis and Rekasius ~83 ,  

also using a variational approach, studied an error  analysis problem 

involving a bounded disturbance with a bounded r a t e  of  change. While 

the work reported by these researchers i s  applicable t o  a wide class  o f  

l inear  and nonlinear systems, t h e i r  resu l t s  i n  no way take into account 

the loca l  o r  global nature of  t h e i r  solutions. t 

Some work has been done on the actual  design of control systems 

using a worst case disturbance approach. 

design problem i n  which both the disturbance and i t s  r a t e  of change 

are  bounded. His resu l t s  are limited t o  second-order, l inear ,  

stationary systems. 

Jackson [a has considered a 

Graham [lo] has used a related approach i n  the  

design of an at t i tude controller f o r  a space booster. Koivuniemi [ll] 

has also considered t h i s  approach, but fa i led  t o  take in to  account the 

poss ib i l i ty  of local solutions. 

A formulation o f  the min-max problem studied i n  Chapter 3 can be 

Although there i s  almost no theoret ical  work reported found i n  CUI. 

i n  the  literature on t h i s  problem, a closely related problem, the 

d i f fe ren t ia l  game, has received a considerable amount of attention. A 

recently published book by Rufas Isaacs [l33 contains a number of 

specif ic  examples o f  d i f fe ren t ia l  games. 

d i f f e ren t i a l  games has been reported i n  [1&16]. 

computational aspects of these problems i s  included i n  ~16-j. 

work dealing with this subject can be found in  Cl7-203. 

Work on the  general theory of 

A study of some of the 

Other 

any maximization problem, one may f i n d  several l oca l  maxima. The 
global maximum i s  the  largest  of these loca l  maxim. 

I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
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A p a r t i a l  d i f f e ren t i a l  equation similar t o  the Hamilton- Jacobi 

equation of var ia t ional  calculus [Zl] is used i n  the study i n  Chapter 30 

Though t h i s  equation can be found i n  most (If the above references, it i s  

derived heur i s t ica l ly  using the Principle of Optimality[U]. 

simple derivatiod provides ibsight i n t o  th;? nature of the min-max 

problem. 

The 

The derivation appears i n  Appendix B. 

1.4 Ormnization 

The research reported on the following pages i s  divided i n t o  two 

main chqpters. 

problem. 

The f i r s t  deals with the worst case disturbance analysis 

I n  studying t h i s  problem, emphasis i s  placed on developing a 

eound method f o r  computing the worst case value of  a system er ror  index. 

Chapter 3 contains the resu l t s  of an investigation of min-max 

problems f o r  a general class of l inear  systems. 

three different  types of performances are  analyzed and compared. 

i n t e re s t  of  continuity, the proofs o f  the resu l t s  of th i s  chapter are 

given i n  a separate appendix. 

Problems involving 

I n  the 

Finally, i n  Chapter 4, the  material i n  t h i s  report i s  b r i e f ly  

sumarized. Several suggestions f o r  future study are  indicated. The 

important contributions of t h i s  research ape also cited i n  t h i s  chapter. 

1 5 As s m t  ions 

I n  the work tha t  follows, several basic assumptions are made. The 

f i r s t  is t ha t  the plant  under investigation may be described by a l inear  

d i f f e ren t i a l  equation. 

varying. 

This equation may be of any order and time- 
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Unless otherwise stated,  it i s  assumed tha t  the magnitude of the  

disturbance i s  bounded, and tha t  the bounds are known. 

assumption, i n  many problems the  worst case disturbance would be 

inf in i te ,  leading t o  meaningless resul ts .  Furthermore, r e a l  

disturbances &re irldeed bounded, and one is often i n  a position t o  make 

reasonable estimate& O f  these bounds. 

Without t h i s  

Performance indices of several different  forms are considered. It 

i s  assumed t h a t  the par t icular  weightings o f t h e  terms i n  these 

performance indices are  given. I n  practice, the  weightings of  these 

terms would be determined from general system requirements i n  such a 

way t ha t  i f  the system performance index i s  small, the  requirements 

of  the system are being attained. 

weightings w i l l  usually involve some t r i a l  and error. 

The determination of proper 

I n  the min-max problems studied i n  Chapter 3, it i s  assumed t h a t  

the disturbance may not be measured direct ly .  

representing the measured value o f  a disturbance must come fromthe 

output of a sensor describable by a d i f f e ren t i a l  equation. 

signal may be considered as  a s t a t e  variable of the system. 

I n  practice,  a signal 

Thus t h i s  

For obvious reasons, only feedback control i s  considered i n  t h i s  

work. 

control a disturbed system without feedback. I n  the  worst case 

disturbance analysis problem studied i n  Chapter 2, it i s  premmed that a 

l inear  feedback control i s  included i n  the description of the system. 

Without knowing a disturbance i n  advance, it i s  impossible t o  

A point of view taken i n  a l l  of the following work i s  tha t  only the 

globally worst case value of a system er ror  index o r  performance index 

I 
I 

has meaning. There are two reasons for  t h i s .  F i r s t ,  i f  one accepts a 

loca l  maximum as the worst case value of thq e r ro r  index and chooses a 
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controlleP t o  make t h i s  value small, he i n  r e a l i t y  be increasing 

the globally worst case value of  the e r ror  index. Becorndl without 

knowledge of the globalma#imum, the designer has no way of knowing if 

the system w i l l  3perate acceptably under worst case conditions. 

1.6 Notation and Terminology 

Throughout t h i s  work, s ta te  vgriable notatioq i s  uged. Veetors 

and matrices are underlined, scalars are  not.  Unless otherwise stated,  

a l l  vectors are  column vectors. A veator o r  matrix i s  called continuous 

or different iable  if a l l  of the elements of the vector o r  matrix are  

continuous o r  differentiable.  The symbol i ( t )  represents a vector whose 

elements a re  the time derivatives of the elements of z ( t j .  A prime ('1 
i e  used t o  indicate the transpose of  a matrix. "he inner product of 

two n-vectors 2 and g i s  represented by 

where xi and yi are elements of the vectors. 

- x i s  defined as 

The norm of an pvgc to r  

where 3 is  a goeitive-selaidefinite nxn matrix. 

t o  reprerent an n-vector whose ith component is 

The symbel &(IC) is used 

SW,  
dxi 

F(x) being a scalar  f'unction of 5 

A scalar  Arnction P(x) i a  called multimodal if it has more than one 

loca l  maximum 122). 

points 5, y i n  X, the  point 

A & X is called convex if f o r  every p a i r  of  
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2 = (1 - A )  5 + A  y ; o s i  s1 (1.31 - 
also is i n  X. 

ronvex i f  fo r  every p a i r  of points 5 and y i n  X 

A function F(x) - defined on a convex set X i s  called 

- 
F((1 - h )  5 + A 5 (1 - X I  F(5)  + A F(y)  (1 * 4) 

f o r  0 5 

convex functions with continuous derivatives [Z3): 
<, 1. I n  Chapter 2, use i s  made of the  following property of 

F(2)  2 F(x) + F ' k )  (x - (1.5) 
3 

Finally, it i s  convenient t o  define the function 

where q and y are scalars.  

I 

I 
I 
I 
I 
I 
I 
I 
I 
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I 
I 
I 
1 
I 
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CHAPTER 2 

A WORST CASE DISTURBANCE ANALYSIS PROBLEM 

2 . 1  Introduction 

I n  t h i s  chapter a worst case disturbance analysis problem f o r  

l i nea r  systems i s  formulated. 

of  t h i s  problem i s  t o  invoke the necessary conditions of the Maximum 

Principle [ 61 e 

d i f f i c u l t  two-point boundary value problem. It w i l l  be shown i n  the 

work that follows tha t  t h i s  boundary value problem may be avoided by 

introducing a special  function which i s  related t o  the worst case value 

of  the  system error  index. 

geometric properties of t h i s  function, an understanding of the under- 

lying nature of the e r ror  analysis problem can be obtained. 

The f irst  logical  step towards the solution 

Unfortunately, these conditions lead t o  a ra ther  

Through a discussion of the analytic and 

2.2 General Problem Statement 

It i s  assumed tha t  the system t o  be analyzed can be described by 

the  l i nea r  vector d i f fe ren t ia l  equation 

- m = &) + c(t> v ( t >  (2.1) 

where - x ( t )  i s  an n-vector describing the s t a t e  of the system, A(t)  and 

- c ( t )  are time-varying matrices, and v ( t )  i s  a scalar  forcing function 

*resenting a disturbance acting on  the system. 

elements of - A(t) and - c ( t )  are 

It i s  assumed tha t  t he  

piecewise-continuous on [to,q where to 
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is assumed t o  be a member of the s e t  Sv. Sv i s  the se t  of piecewise- 

continuous time functions defined on [to,”J and sat isfying 

where y l ( t )  and y,( t )  are piecewise-continuous on [ to,q The i n i t i a l  

s t a t e  

- x( to)  = 

i s  assumed t o  be known. 

Next, define the error  function 

where 3 is a positive-semidefinite constant matrix. Finally, t o  judge 

the qual i ty  o f  the system we will define a perfordlance index simply as 

(2.5) 
1 2  J(%, to, T; V) * z E (T) 

The wqrst case disturbance problem may now be stated: 

Determine the tlisturbance + ( t )  Sv such t ha t  

2 . 3  A Special Case 

Consider first the special  case of (2.4) i n  which 

E(t)  = \g&)l (2.7) 

where K i s  a constant n-vector. 

maximize J(&, to, T ; V) will also maximize E(T),  we focus at tent ion 

on the error  function. 

Since the disturbance which will 

I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
1 
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From l inear  d i f fe ren t ia l  equa+&n theory [24] it i s  well known tha t  

- x(T) may be expressed as 

where &(t) i s  an nxn matrix satisfying 

with terminal conditions 

&(TI = r, (nxn ident i ty  matrix) 

The terminal error  may now be expressed as 

(2 9) 

(2 lo) 

(2.11) 

(2*12) 

where p ( t )  is a piecewise-continuous scalar  t i m e  function sat isfying 

I P ( t ) l  I1 t c v0?l (2 13) 
Because of the obvious one t o  one relationship between v ( t )  and p ( t ) ,  it 

w i l l  be suff ic ient  t o  &imize E(T) with respect t o  p( t ) .  

f’unction i n  equation (2.11) may now be written as 

The error  

E(T) = 1g’&‘(to) &J + e(tJ 
* 

where 

It i s  clear  by inspection of (2.14) t ha t  if 
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(2.16) 

If ~ ' ( t )  k ( t )  

p ( t )  has no effect on E(T) on th i s  subinterval; it may therefore be 

chosen t o  be any value. 

= 0 on some subinterval of [to,q , it i s  c lear  t h a t  

To be def in i te  we shall s e t  p*(t) - 0 on any 

such subinterval. 

Inspection of (2.14) f'urther indicates t h a t  i f  

- ~ ' f ' ( t ~ )  + e ( to )  = 0 

the maximizing p( t )  i s  not unique. That i s ,  i f  

1 if s ' ( t )  k ( t )  g> 0 
if c'(t) &(t )  E <  0 P * ( t )  = { -1 

it is clear  that  - p*(t) w i l l  also maxilhize E(T). Since we are  

primarily concerned w i t h  the worst case value of E(T) w h i c h  i s  the  same 

f o r  e i the r  choice of p ( t ) ,  we s h a l l  f ind  it convenient t o  d e f i n e  a 

specific maximizing disturbance. Thus, i f  

- K'k'(to> x( to )  + @(to)  = 0 

it w i l l  be assumed tha t  p*( t )  i s  as  defined i n  (2.17). 

statements lead t o  the  following expression fo r  vlc(t): 

A l l  of t he  above 

(2.18) 
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I 

I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

~' 

~B 

13 

By invoking the Principle of Q t W i t Y  [12), one may replace the 

argument to with t i n  the above expression without affect ing +( t ) .  

resu l t ing  &&&&sion f o r  *(t) is therefore a function of the present 

s t a t e  o r  a nfeedbackn dieturbance. 

The 

The worst case disturbance wr,lue o f  the terminal e r ror  may now be 

expressed as  

*(TI = lg'.&'(to) + e ( t  , I  0 

Again using the reasoning of the Principle of  Optimality, to may be 

replaced by t e[to,TJ without affecting the  value of  the above expression. 

Though independently developed by th i s  author, the above resu l t s  a re  

not new. 

1964 have a l l  obtained similar solutions. 

Jackson [q i n  1960, Desoer [25J i n  1962, and Howard [ k ]  i n  

The above resu l t s  are  i l lus t ra ted  by the  following example: 

E~at@e_2.3.1 

&Eider the osc i l l a to r  

j ;  + y = v ( t )  

pcq g a 

where 

Define 

The problem is t o  determine the  maximum value of E(T). 

% = $, the  & matrix may be expressed as 

If x1 = y and 

COS (T- t ) 

- s i n  (T- t ) COS (T-t ) 



Thus 

v 
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Using (2.19), the worst case disturbance value of E(T) i s  computed t o  be 

P ( T )  = \cos(T-t) xl(t) - sin(T-t) % ( t ) \  

+ a [24 + 1 - \cos(T-t)\] 

T- t 
where 4<..5.1+1 

and 4 is  any non-negative integer. 

2.4 The Maxim Principle E a t i o n s  for the  General Problem 

We now return t o  the general problem of Section 2.2. Since the 

maximization of J(X, to, T; v) with respect t o  v is a problem i n  the 

calculus of variations,  the Maximum Principle [6] i 8  employed as a first 

step towards solution. 

Define the Hamiltonian 

H&(t), A( t ) ,  v ( t > j  t )  = A' ( t )  &( t )  a ( t )  + b ' ( t )  q(t) v ( t )  (2.20) 

If +( t )  is a maximizing disturbance resul t ing i n  a t ra jec tory  x*(t) - 
t e c t o a T J >  then the following necessary conditions must hold: 

1. There exist  multipliers 1, and A(%) which are continuous on 

[to,TJ and which do not a l l  vanish simultaneously on [t,,qo 
2. The t ra jectory e ( t )  and the disturbance + ( t )  are  related on 

(2.21) 

3. The d t i p l i e r s  A, and a ( t )  satiaf'y the d i f f e ren t i a l  equations 

1 
I 
1 
I 
I 
I 
I 
i 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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(2.22) 

3 and 4 it i s  clear  t ha t  i f  Lo = 0, A(t)  E 0. 

condition 1. 

This would violate  

Thus 1, # 0. We choose it t o  be unity. 

Note tha t  condition 5 imglies t ha t  

a t  a l l  points on [ to,q where c I ( t )  A ( t )  # 0 . If s ' ( t )  A(t)  E o on 

some subinterval of [ t  ,q, t he  t ra jectory - xSc(t) is said t o  be on a 

singular surface [26]. 

Maximum Principle is sa t i s f ied  for any v( t ) .  

+( t )  on a singular surface w i l l  be solved i n  the next section. 

0 

On a singular surface, condition 5 of the 

The problem of determining 

2.5 A Simplification o f t h e  General Problem 

The necessary conditions outlined i n  the l a s t  section imply tha t  

one must solve a two-point boundary value problem i n  order t o  f i n d  the 

maximum value of J ( s ,  to, T; v). 

shall show that this boundary value problem may be avoided. 

basical ly  as  follows. 

By introducing a special  function, we 

The idea i s  

I n  Section 2 . 3  a complete solution was obtained 
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f o r  the special  problem with the e r ror  function defined by equation (2.7). 

Thus, assbciated with the special  problem there  must be multipliers 

which sa t i s fy  the d i f fe ren t ia l  equations (2 -22) and boundary conditions 

(2.23) of the  Maximum Principle. 

the B;eneralproblem of Section 2.2 also sa t i s fy  these same d i f f e ren t i a l  

equations but with different  boundary conditions. If  an error f’tmction 

can somehow be judiciously defined f o r  the special  problem so t h a t  the  

multipliers f o r  both problems sa t i s fy  the same boundary conditi-dns, then 

It i s  noted t h a t  the  multipliers fo r  

the general problem w i l l  be solved. 

Consider the e r ror  f’unction 

@! .26) 1 
E(t,E) = I r ‘ ( t>  E- q 

where Q 

matrix which diagonalizes 4: 

E” i s  an a rb i t ra ry  constant n-vector. if r j  nonsingular 

I -r 
in the  parti t ioned matrix i n  (2.27) a re  null matrices of appropriate 

i s  the rxr ident i ty  matrix, r being the rank of 3. The,o;ther en t r ies  

dimension. 

Consider the performance index 

(2.28) 

The worst case disturbance value of t h i s  performance inde’x can bexe la t ed  

t o  the’.worst case disturbance value of the general performance Bndex 

JI_xo, to> T; v) defined by equations (2.4) -and (2.5). 

Define the return F(x(t) ,  t, - CY) as the worst case value of 
2 E (T,g>Jz f o r  a process s t a r t i ng  a t  time t e [to,q i n  s t a t e  x ( t ) .  
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where 

- i(t) = - - A’(t) P ( t )  

and 
-1 -- P(T) = g 

-1 (We have introduced g( t )  = E 
#(t,g) and e(t,Q) - sa t i s fy  

r ( t )  t o  simplify notation.) The scalars  

with boundary conditions 

pl(T>gE) = 0 

e(T,g) = 0 

Define the vector function h(t,a) - on [t,,q by 

(2 .33)  

A ( t @  = P(t)  [ s@(l, (5‘ ( t @ )  g ( t )  2 + e(t,S)))] 

[ 12’ h g )  ~ ( t )  g + e( t ,a ) l  - + ~b(t,a)] (2.35) 

where x(t,g) - i s  the worst case trajectory f o r  the performance index 

defined i n  (2.28).  It may be easily determined f r o m  the  results of 

Section 2 . 3  t ha t  bhe worst caae disturbance f o r  3 i s  
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T n 
Next define Q as a subspace of E with the following properties: A 

vector - a i s  i n  or i f  

(2 37) 
2) ai = 0 i =  r + 1 t o  n 

Next consider the vector &(&,, to, a) - h o s e  ith component i s  

Inspection of (2.30) indicates t h a t  these derivatives w i l l  ex i s t  f o r  a l l  

g , E  i f  n 

I With these preliminaries completed, the following theorem may be stated: 

Theorem 2 . 1  
A 

If ' there ex is t s  an - 01 or such that 

A A A 

then the t ra jectory r ( t , g )  , A(%,@ and the  disturbance v(t,cJr) - 
const i tute  a solution of t he  necessary conditions of %he &ximum 

Principle for the general problem formulated 31% Section 2.2. I 

1 
I 
I 
I 
I 
I 

4 

I n  Appendix A it i s  shown t h a t  A(t,CZ) is continuous and. s a t i s f i e s  

the  d i f fe ren t ia l  equation i n  (2.22) on [to,T1, thus estaBlishing t h a t  

necessary conditions 1 and 3 are  sat isf ied.  

sa t i s f ied  since z ( t , g )  i s  the t ra jec tory  resul t ing f r o m  the  disturbance 

v( t ,g) .  

condition 5 i s  sa t i s f ied .  

shown tha t  if the hypothesis holds, necessary condition 4 (the 

Condition 2 i s  automatically 
A 

A 

N e x t ,  from (2.25) and (2.36) it is  Clear t h a t  necessary 

Thus t o  prove Theorem 2.1 it remains t o  be 

I 
I 
I 
I 
I 
I 



tra1:sversality condi t ion)  holds.  To do this f i r s t  no te  f r o m  (2.30) t h a t  

(2.43) 
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The converse of Theorem 2 . 1  i s  also t rue:  

Theorem 2.2 
A A A 

If for some a - nr, the t ra jec tory  g(t ,E),  A ( t , g  resul t ing 

f r o m  the disturbance v(t,g) s a t i s f i e s  the necessary conditions of 

the Maximum Principle f o r  the general problem, then 

Since the necessary conditions are  sa t i s f i ed  
A A 

h(T& - = 3 &,a> 
From (2.35) and (2.48) 

(2 47) 

(2.49) 

or 
A 

A 

D(!!-’)‘ - zE(T,!2) E(T,g) sgn(1, x(T) g(T) & + €J(T,L)) - 
& A  

(2 51) A 2  A 

= - a E (T,g) = 2 F(xo, to, ,Q 

Finally, using (2.40), (2.45) and (2.51) it follows t h a t  
A A A  

-e+’ J’ ( X  to+ 2) = 2 F(%, to, E) 2 (2.52) 

and thus the theorem i e  proved. 

There remains one important question. Does there ex i s t  an 8 or 
such t h a t  v(t,a) i s  indeed the maximizing disturbance f o r  the  general 

problem? This question i s  answered by a corollary of  the f a l l o e n g  

theorem. 

Theorelp ,2.3 

Let J(&, to, T; v) and F(lf(t), t, g) be defined by (2.5) and 

(2.29) respectively. Then 

I 
I 
I 
I 
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(2 53) 

To prove t h i s  resu l t ,  first consider the difference between the 

performance indices for the general and special  problems: 
- J(lr0, to, T; VI - J(&, to, T, Q; 

=zLx( 1 - 
= - 1 I Ig&-’)‘ z(T) - ak’(T) 3-l % ) I  I 

1 2  TI s X(T) L . & ( T )  5- g) -j 

2 (2 54) 2 - 
It i s  clear  t ha t  

From (2.54) it i s  clear  tha t  

Therefore 
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Corollary 2 . 1  

If +(t) , and v(t,g) are a s  defined above, then 

*(t) = v(t ,g+)  (2.61) 

i s  a maximizing disturbance f o r  the general problem. 

This follows direct ly  from Theorem 2.3. 

Note tha t  sfnce v ( t , F )  i s  not necessarily unique, + ( t )  i s  not 

necessarily unique. However, i f  several different disturbances resu l t  

i n  the worst case value of the  performance index, t h i s  will cause no 

problem sinW it i s  the worst case value which i s  of primary concern. 

In  the l a s t  section, the poss ib i l i ty  of a singular surface ( i .e . ,  

- x ' ( t )  c ( t )  I 0 on an interval  of f i n i t e  length) was mentioned. From the 

discussion i n  Section 2 .3  and the  'pesults stated above, it i s  clear t ha t  

the  disturbance +(t) does not a f fec t  the performance index on a singular 

surface. By defining v(t ,g) a s  i n  (2.36), +(t) i s  $pecf.fied t o  be zero 

on a singular surface. 

Note that as a consequence of Theorem 2.3, equation (2.47) becomes 

Unfortunately a necessary condition t o  be sat isf ied by a maximizing g. 
t h i s  condition may be sa t i s f ied  by more than one value of E; 

F(x0, to> a) - is a multimodal function (see Section 1.6) of E. 

be said about t h i s  i n  a l a t e r  section. 

More w i l l  

2.6 Properties of F ( s ( t ) ,  t, - a) 

I n  t h i s  section, the  previously derived resu l t s  are summarized. I n  

addition, several additional properties of F(x(t)  - , t, 0 )  are described. 

F(x(t1,. t, c)  i s  the  optimal return for  the performance index 1. 

I 
I 
I 
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represent the optimal solution for the  perforhahce index 

3. The t ra jectory 2(%,2), &(t,g) and the  disturbance v(t ,g) 

s a t i s fy  the necessary conditions of  the Maximum Frinciple far 

the performance index 

r a . where g For the proof see Theorems 2.1 and 2.2. 

For the  proof see Theorem 2.3. 

F(+,, to, a) - i s  a convex function of g e E”. 

from an application of the def ini t ion of convexity (see 

Section 1.6) t o  the expression i n  (2.30). 

F ( s ,  to, 5) = F(%, to, - g), 
an inspection o f  (2.26). 

5 .  The proof follows 

n 6. E . This may be seen from 

r 7. J(%, to, T; v( t ,a))  2 F(x~, to, 01, ,o n . This follows 

from (2.55). 
1 r 8. P(s, to, o [ )  = F;(s, to, - a)i E, Q n . This follows 

from (2 .&Ole 
r 

9. If 2 Fa(%, to, E) = 2 E‘(%, to, E) a, s 0 9 *en the  

following hold: 

a)  - - -  + D ( M - ~ ) /  Z ( T , ~ )  

112 E’ x(T,a)lI 
-1 a =  - 



This follows d i rec t ly  from the hypothesis above. 

a 
i = 1 t o  r-1 r i 

i ar Or 

We may now state  the following additional properties: 

v F i = F a  - F  - 

r 10. If 2 I&(%, to, 0) = 2 F ( s ,  to, 01) E, g 8 Q , then vrF - = 0. 

The proof of t h i s  follows d i rec t ly  f r o m  (2.63). 
r 

r- 1 

i=l 

11. The vector v is discontinuous on the surface described by 

5, ar = - c ai si 

ar 

(2.64) 

J __ 

For computational purposes one might make the substi tution 

(2.62) 

and consider F as a function of the independent variables 5 t o  Or - 
Assuming the substitution i n  (2.62) has been made, it i s  convenient t o  

r define the gradient of F, v as an r-1 vector with ith component 

d a  
i = 1 t o  r-1 r r 

v Fi = Fa i +Fa r i  T 

But from (2.62) 

r ai 

dai ar 

d a  
- = - -  

Thus 

a 
i = 1 t o  r-1 r i 

i ar Or 
V F i = F a  - F  - 

We may now state  the following additional properties: 
r 10. If 2 I&(%, to, 0) = 2 F ( s ,  to, 01) E, g 8 Q , then vrF - = 0. 

The proof of t h i s  follows d i rec t ly  f r o m  (2.63). 
r 11. The vector v is discontinuous on the surface described by 

(2.64) 

__ 
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where 

where 

and! 

(2.65) 

To prove th i s ,  it i s  noted from (2.30) tha t  I& has a discontinuity 

along the surface 5'" = 0. 

be readily determined that the expressions i n  (2.64) describe a 

Property 11 fDllows direct ly .  It may - - 

half  hyper-ell ipmidal surface i n  r-1 space. The equation of  the 

en t i re  ell ipsoid i s  

This surface divides the r-1 dimensional 

into two par ts .  

(2  ' 66) 

space on which F i s  defined 

These properties are best i l lustrated by means o f  examples. 

zxample 2.6.1 

Consider the system 
. 
x = x  1 2  

x = v  2 

xl(o) x 2 ( o )  = = -1 3 * 5  } 

The problem i s  t o  maximize the performance index 
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w i t h  respect t o  the distyrbance v. It is eas i ly  determined t h a t  

is shown i n  Figure 2.1. 

J(x0, to, T; v ( t , a ) ) .  

- 11.5, l / ,  and 5 / 0 9 .  The corresponding f i n a l  s t a t e s  and values of 

performance index are  given i n  Table 2.1. 

The other curve i n  the figure is  
r The values of CYl resul t ing i n  v = 0 are  

Table 2 .1  Results fo r  Example 2.6.1 

- u s  1 -2 2.5 

1/Jz -4 -4 16.0 

5/09 ' 5  2 14.5 

It can be easi ly  verified tha t  - each of the f i n a l  s t a t e s  above resu l t s  

from a t ra jectory satisfying the Maximum Principle. 

data exhausts a l l  poss ib i l i t i es ,  it i s  c lear  that the worst case value 

of the performance index ( i  .e., the global maximum) i s  J = 16. 

Since the above 
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- 
*l - 
t h i s  

Note tha t  Property 11 implies t ha t  vrg w i l l  have a discontinuity a t  

2/J5. Inspection of the  curve fo r  F i n  Figure 2.1 indicetes tha t  

i s  indeed the case. 

Example 2.6.2 

Consider the third-order system described by 

x1 = x2 

;Lz = x3 

= - 8~, - 6x2 - 3x3 + 8~ &3 

where 

p1 s 1 
For a given i n i t i a l  s t a t e  &, the  problem i s  t o  maximize 

with respect t o  v. 

This problem has been solved f o r  two d i f fe ren t  i n i t i a l  s t a t e s  and 

f o r  two different  values of T. The r e su l t s  are  summarized i n  Table 2.2 

below. 

Table 2.2 Results f o r  Example 2.6.2 

H i l l  I n i t i a l  State  (x') 
T ";t 3 J(%, 0, T; +) - - - 

1 (0, 0, 0) 1 -.14 -.06 4-33 

.18 -.81 64.6 2 (10, -5, 1) 1 

3 (0, 0, 0) 3 -.ZO -.05 20.2 

4 (10, -5, 1) 3 -.16 -.31 53.3 

Level curvee (curves of constant F&, 0, a)) f o r  "hi l ls"  1 t o  4 

The dependent on the  (5, 02) plane are  shown i n  Figures 2.2 t o  2.5. 



Figure 2 .3 .  Level curves for H i l l  2. 
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Figure 2.4. Level curves for H i l l  3. 
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Figure 2.5. Level curve,. for H i l l  4. 
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va r i ab l e  

2 112 a = (1 - 3 - a2> 3 

It i s  observed tha t  h i l l s  2 and 4 are multimodal. The e l l i p t i c a l  

surfaces of discontinuity of prF(x 0, CY) - are  c lear ly  vis ible .  
-3’ 

NQte tha t  the points a t  which the peaks of h i l l s  3 and 4 occur are  

closer together than the corresponding points fo r  h i l l s  1 and 2. I n  

addition it i s  observed tha t  the surface of discontinuity f o r  h i l l  4 i s  

closer to the  bounding uni t  c i rc le  than i s  the surface of discontinuity 

f o r  h i l l  2. I n  f ac t  as  T-.. Q), one would expect arW t o  become independent 

of the i n i t i a l  s ta te ,  and the surface of  discontinuity t o  approach the 

uni t  c i rc le .  The reader may easi ly  convince himself (see equation 2.65) 

t h a t  these statements are t rue  for any s table  system with a 

symmetrically bounded forcing function. 

Figures 2.2 and 2.4 seem t o  indicate t h a t  h i l l s  1 and 3 are  

unimodal.+ This i s  primarily due t o  the  incomplete data presentations i n  

the  proximity of the bounding unit c i rc les .  A second p lo t  of l eve l  curves 

f o r  h i l l  1 (Figure 2.6) i n  the (CYl, OL ) plane with 3 

a 2 =,/- 
c lear ly  indicates t ha t  h i l l 1  i s  multimodal. 

‘A unimodal h i l l  i s  a h i l l  with a single peak. 



Figure 2.6. Level curve fo r  Hill 1 using Q1 and 
a aa independent variables. 3 

2.7 Geometric Interpretation 

It i s  possible t o  give a geometric interpretat ion t o  the  f’unction 

F(&, to, (r) used i n  Zxample 2.6.1. To do t h i s  f i r e t  consider 

X ( T P )  - = x l ( 3 )  + Q2 5 ( 3 > 1  

which i s  the error f’unction for  the example. 

ae t he  magnitude of the pmjection of the f i h a l  s t a t e  ~ ( 3 )  in the  

direction (remember tha t   ha^ unit  length). 

worst case value of E(T,E) i s  determined by the final e ta te  ~ ( 3 )  which 

has the lmgest projection in the  ,O direction. 

E(.T,g) may be thought o f  

It is clear  t ha t  the 

i ~~ 
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To proceed further,  we shal l  make use of the notion of a reachable 

zone 14, 71. A T-second reachable zone for a forced l inear  system 

cons i s t so f  a l l  the f i n a l  s ta tes  which may be reached from the given 

' 

i n i t i a l  s t a t e  i n  T seconds due t o  the system forcing function. The threp 

second reachable zone for &ample 2.6.1 with zero i n i t i a l  conditions has 

been previously determined [q and is shown in Figure 2.7. 

readi ly  established that the homgeneous pa r t  of the f i n a l  s t a t e  ( i .e .  

t h a t  pa r t  of the f i n a l  s t a t e  due j u s t  t o  the i n i t i a l  conditions) fo r  the 

example i s  . 

It may be 

This means tha t  the reachable zone fo r  the i n i t i a l  conditions i n  the 

problem may be determined by sh i f t ing  the center of the zone shown i n  

Figure 2.7 t o  the poin t&.  The resul t ing reachable zone i s  shown i n  

Figure 2.7. Three-second reachable zone 
f o r  the  system i n  -ample 2.6.1 
with z e m  i n i t i a l  conditions. 
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Figure 2.8.  

origin i s  accidental and of no relevance.) 

(The fac t  t ha t  the boundary of t h i s  zone intersects  the 

How t o  determine the worst case value of the e r ror  function i s  now 

apparent. 

t o  t h i s  l i ne  which are  tangent t o  t‘ne boundaries of the reachable zone 

F i r s t  the l i ne  i n  the - Q direction i s  extended. Then normals 

are  determined. 

larger  of the two  f i n a l  s t a t e  projections i n  the - (r direction. 

The worst case value of E( t ,O)  - i s  c lear ly  equal t o  the 

The 

corresponding worst case f i n a l  s t a t e  i s  indicated by x(3,a). 

the  given value o f 2 , t h e  distance from the origin t o  point A i n  

Figure 2.8 represents the worst case value of the e r ror  function. 

F(%, to, a) - i s  equal t o  one-half of the square of the value of the worst 

case error  function, the interpretation of F(&, to, 0) i s  complete. 

Thus f o r  

Since 

The operations j u s t  described can be performed fo r  many values of 

- a resul t ing i n  the dashed l i ne  shown i n  the figure. The dashed l i ne  

touches the boundary of the reachable zone f o r  the three values of Ol 

given i n  Table 2.1. 

Though the idea of a reachable zone i s  helpful i n  understanding 

the F ( 5 ,  to, ,O) function, reachable zone theory i s  o f  limited value as 

a means of solution of the general worst case e r ror  problem. This i s  

because for  systems of order higher than two the computation o f  a 

reachable zone boundary i s  quite d i f f i c u l t .  

2 .8  Computational. Considerations 

As noted i n  a previous section, the maximization o f  F(x+ to, E) i s  

a mt&timrDdal hill-climbing problem. 

corresponds t o  a solution of the Maximum Principle equations. 

present time, the author knows of no method (short of an exhaustive 

Each loca l  maximum of  the h i l l  

A t  the 



36 

search in - a! space) which is guaranteed to find the global maximum of a 

multimodal hill. 

One method which might be tried is outlined as follows. First 

define a set of evenly spaced points in nr. From each of these points 
use an efficient local hill-climbing technique to determine the local 

maximum. 

candidate for the global solution. 

relatively smooth function of 2 (not too many peaks) and because nr is 

Compare the local solutions to determine the best possible 

Because F(&, to, - a) is usually a 

compact, such an approach i s  feasible if r is not too large. 

an efficient local hill-climbing method is required. 

O f  course, 

We shall suggest twa computational techniques for determining a 

local maximum of the hill. Both are iterative methods. 

The functions I&(%, to, g) and E'(%, to, 3)  are utilized in both 

computational schemes. It is possible to compute these quantities on 

successive iterations without solving any differential eqhtions. 

Consider the expression 

which follows f r o m  ( 2  39) and (2.65). If we define the n-vector 

"0 

it may be readily determined from (2.67) that 

(2.68) 
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where the ti$ i-1 t o  k,are the  zeros of (c ’ ( t )  - - P( t )  a) (or the end-points 

of intervals  on which c’W E 0) on ( to ,T)  and tk+l = T. The Tie, i = 1 t o  

k+l, are a rb i t ra ry  points satisfying ti e (ti-l, ti>. 

- w ( t )  and r; are  independent o f  - a, they need only be computed once. 

- 
Note tha t  since 

To obtain F(&, to, g) and F&(s, to, - a) from (2.69) i s  a simple 

matter. We know from Property 8 i n  section 2.6 t h a t  

Thus using (2.69) and (2.72), E(T,g) can be computed. 

again and (2.71) , one can compute &(&, to, - a) and F ( s ,  to, E). Note 

tha t  except f o r  the i n i t i a l  conrputations needed t o  compute g/(t)s, - w ( t )  

and 5, no integration is required. 

Using (2.69) 

It i s  also pdinted out t ha t  only the first r elements of 

&(&, to, or) are required for  computation. 

computing and storing ( i f  a d ig i t a l  computer i s  used) a l l  the  elements 

Hence, ra ther  than 

i n  2, w(t),  and P’(t)  c(t), one need only compute and s tore  the first 

elements. Thus memory requirements are  roughly 2 r t i m e  functions. 



The first computationalmethod t o  be considered i s  simply a gradient 

technique. Basical~ly the policy i s  t o  change i n  the dtrection of - 

steepest ascent on the h i l l .  Given the point 9, t o  determine EO 

t h a t  

one could use the scheme 

CY!’’ = < + S  V F(&, to, - a j )  i m l t o r - 1  (2 73) 
r 

1 

where S i s  a posit ive number (the step size). 

v Fi may be computed using the  eq res s ion  i n  (2.63). The standard 

method fo r  determining S i s  t o  assume tha t  A’F, the  change i n  F, 

The gradient components 
r 

satisfies 

By then specifying the  desired fract ional  change 

one may solve fo r  S. 

O f  course f o r  (2.75) t o  hold, one m u s t  pick p3+’ ~ m l l .  

can only be determined by t r i a l  and error .  

Just how small 
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We have t r i ed  t h i s  approach on several problems with moderate 

success. 

techniques) the determination of a suitable step size.  

The main problem has been (as it usually is with gradient 

Rather than pursue the gradient method any further, we consider a 

second method which completely avoids the step s ize  problem. 

been noted i n  Section (2.6) that F ( 5 ,  to, - a) i s  a convex function of - a. 
Thus using the property of convex functions described i n  (1.6) 

It has 

!rhus 

r 
The expression on the right will be a maximum fo r  d”l - e 0 i f  

(2.80) 

Furthermore, ~F(gj+’) w i l l  be s t r i c t l y  posit ive i f  - d f - d+’, 
If d+l = d ,  it follows from Property 31Section (2.6) t ha t  a loca l  

maximum of F has been found.+ 

convergence t o  a local  maximum i s  assured. 

This computational technique has been applied t o  several problems 

nr. 
- - 

Thus using the policy expressed i n  (2.80), 

including Examples 2.6.1 and 2.6.2. 

fo r  2 , convergence t o  local  maxima was invariably rapid (less than 4 

Using different  i n i t i a l  guesses 
1. 

‘Of course, one might make an i n i t i a l  guess for  2 corre onding t o  a 
l oca l  minimum of F. For such a case, using (2.80) & = 3 
the  i n i t i a l  guess i s  not right ‘at a minimum point,-gj+l-=’d can only 
occur a t  a local maximum. 

If, however, 
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i t e ra t ions) .  

i t e ra t ion  i s  very small, t h i s  technique i s  considered t o  be highly 

eff ic ient .  

I n  v i e w  of the f ac t  t h a t  the aplount of computation per  

2.9 Summary 

I n  t h i s  chagter a general e r ror  analysis proble6 for  l inear  systems 

with quadratic e r r o r  c r i t e r i a  and bounded disturbances has been' 

formulated. 

have been able t o  show tha t  the maximum of the functional J(lr0, to, T; v) 

with respect t o  the forcing function v ( t )  i s  equal t o  the maximum of 

the func t ion  F ( 5 ,  to, 2) with respect t o  Q a or- A geometric 

interpretation o f  the function Fk, to, 2) has also been presented. 

By identifying t h i s  general problem with a simpler one, we 

Since the dimensionality o f  or depends only on the rank of Q and 

not on the order  of the system, high order systems present no special  

computational d i f f icu l t ies .  

suggested i n  [12]. 

"his reduction o f  dimensionality was 

i n  general, if the system i s  not, completely controllable ( for  a 

def ini t ion of  control labi l i ty ,  see [24]) w i t h  respect t o  the 

disturbancej .singular surfaces can ex is t  [ k ]  . Since our resu l t s  take 

in to  acqount singular cases, a cont ro l lab i l i ty  a s s q t i o n  (which i s  

unreasonable for  disturbance inputs) has not been required. It has 

been noted that  while on a singular surface, the disturbance has no 

e f fec t  on the performance index. 

The multimodal nature of F(&, to, - a) has been tSstabl3.shed. 

pointed out that  each loca l  m a x i m  of F ( s ,  t6, g )  corresponds to a 

loca l  solution o f t h e  Maximum Principle equations. However, since 

F(&, to> - a) is re la t ive ly  smoth and since Q 

It was 

r is compact, for small r 
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one should be able to determine the maximum with a reasonable amount of 

effort. 

To aid in computing the maximum, an efficient computational 

algorithm has been presented. It should be mentioned that other 

computational techniques have been proposed for solving the problem 

formulated in this chapter [28J The author's experience with 

these other techniques has indicated that they require considerably 

[b] . 

more computation and are not as'efficient as the scheme proposed in this 

chapter 
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CNAPTER 3 

A STUDY OF MLN-MAX PROBLEM FOR LINEAR SYSTEMS 

3 . 1  Introduction 

I n  the design of a control system based on a worst case disturbance 

approach, one attempts t o  determine a feedback controller which w i l l  

r esu l t  i n  an acceptably small worst case value of a system error  

function. Thus for  each controller considered i n  the design, a worst case 

disturbance error  analysis i s  performed t o  determine i f  the  control i s  

acceptable. Often, however, one i s  interested i n  having the system 

behave not only i n  an acceptable manner, but also i n  the best possible 

manner. 

problem: 

In  v i e w  of  t h i s ,  it seems reasonable t o  pose the following 

Determine the feedback controller from a suitably defined class  

which w i l l  resu l t  i n  the smallest worst case disturbance value of the 

I 
I 
I 
I 
1 
I 
I 

system error  l n c t i o n .  Mathematically, t h i s  amounts t o  determining the 

controller which minimizes the system error  function while the 

disturbance acts  t o  maximize it. 

as  the "min-max" problem. 

This problem sha l l  be referred t o  

On the following pages, a more detailed formulation of the problem 

is  presented. The relationship between the min-max problem and the 

so-called "different ia l  game" i s  indicated. I n  the remainder of the 

chapter, the resu l t s  of  an investigation o f  the min-max problem are  

described. By considering general l i nea r  systems and specif ic  
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performance indices, it has been possible t o  make a complete analysis of 

several problems 

3.2 Formulation of  the Min-Max Problem 

I n  t h i s  section, a min-max problem i s  formulated fo r  a general 

The formulation begins by s p e c i w n g  the nonlinear dynamic system. 

system vector d i f fe ren t ia l  equation 

- m = g&, t, 3, 1) (3.1) 

where 2 i s  an n-vector of s t a t e  variables fo r  the system, u ( t )  i s  an 

m-vector control, and x ( t )  i s  an r-vector disturbance acting on the 

' system. The system i s  t o  be judged i n  terms of the  performance index 
T J(s, to, T; 2) = J  g(5, t, 2, 1) d t  

+ G(z(T),T) (3 .2)  

where g and G are scalar  functions. 

but fixed. 

The i n i t i a l  Etate i s  a rb i t ra ry  

The i n i t i a l  and terminal times to and T are also fixed. 

Let S and S be suitably defined constraint s e t s  f o r 2  and 1. We 
V - U - 

sha l l  consider the controller IJ&,t) t o  be a member of the  class  Cu i f  - 
along a trajectory z ( t )  which i s  a solution of 

- i ( t )  = f(&, t, u(x , t> ,  1) 

- u( t )  E v(&),t) (3.4) 

(3.3) 

- v Sv, the relationship 

resu l t s  i n  2 ( t )  Q Su. It i s  assumed tha t  i f  g(&,t) Q Cut then - - 
(3.5) 

- 
exis ts .  Maximization here, is meant i n  the same sense as  i n  Chapter 2. 

That is, the disturbance k ( t )  maximizes the f'unctional i n  '(3.5) subject 
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t o  the d i f f e ren t i a l  equation i n  (3.3). T ~ U E  the quantity i n  (3.5) 

represents the worst case disturbance value of the performance index i n  

(3 .2)  f o r  the controller g(x, t )  - 
With these preliminaries completed, the min-max problem may now be 

stated as follows: D e t e d n e  a controller 2* = tJ*(s,t) g Cu such t h a t  - 

- - 
f o r  a l l  tJ(x,t) (5 Cu. Thus the problem i s  

- U * k , t )  which w i l l  r e su l t  in the smallest 

performance index in (3.2). 

- 

It i s  noted tha t  the problem implied 

t o  determine a controller 

worst case value of  the 

by (3.5) i s  a one sided 

maximization problem. It is convenient f o r  analysis purposes t o  think 

of the maximizing disturbance as a function o f  s ta te .  Actually t h i s  

function w i l l  also depend on g(x,t). Hence i n  defining a worst case 

disturbance feedback f’unction, a par t icular  l J k , t )  must be specified. 

Define ,v)c = l* (z , t )  as the maximizing disturbance fo r  the Functional 

Jk, to, T; g*(z,tL XI (3.7) 
With these definit ions i n  mind, the f o l l o d n g  relationships should 

be self-evident 

(3.9) 

3.3 The Relationship Between the Min-Max Problem and the Different ia l  
Game - 
I n  sp i te  of i t s  in tu i t i ve  appeal, the min-max problem formulated i n  

the l a s t  section has received almost no at tent ion i n  the l i t e r a tu re .  
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HDwever, a closely related problem, the so-called d i f f e ren t i a l  game, has 

been the subject of much investigation i n  recent years [ l3 -Zq .  
11 11 I n  the d i f fe ren t ia l  game one attempts t o  determine s t ra tegies  

U ( 2 , t )  and V ( 2 , t )  from suitably defined classes o f  functions (_V(x,t)) 
and (V(x,t)) so t ha t  

A A 

- 

c A J(s, to, T; g(x,t>, V(x,t)> 
A 

<, J(%, to, T; U h t L  V(5Yt)) 

and 

A pa i r  of strategies sat isfying (3.10) and (3.11) i s  said t o  represent a 

11 “saddle point. 

It i s  easily shown tha t  the d i f f e ren t i a l  game is a min-max problem. 

Using (3.10) 

It i s  c lear  from (3.11) tha t  
A A 

J(%, to, T; U ( f f y t ) ,  &t))  

= max J(Q to, T; g(r , t> ,  2) 
vc sv 

A 

- 
Combining (3.12) and (3.13) one f i n d s  t ha t  

A 

max J(+,, to, T; U ( x , t ) ,  1) 
v c  gv - 

(3.13) 

(3.14) 
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By comparing (3.14) with (3.6) it i s  readily concluded tha t  the s d u t i o n  

t o  the d i f f e ren t i a l  game i s  also the solution t o  the min-max problem. 

It should be pointed out that the reverse i s  not  neceasarily t rue.  

i s ,  one may fortnulate a min-max problem which has a solution, while the 

corresponding d i f f e ren t i a l  game may have no solution.t However, i f  the 

scalars g and G i n  the performance index i n  (3 .2)  and the elements of 

the vector - f i n  (3.1) are  separable functions of 2 and 2, the  

corresponding min-max problem and d i f f e ren t i a l  game are equivalent [lq. 

That 

I n  the following study of min-max problems fo r  l inear  systems, we 

sha l l  r e l y  primarily on intui t ive arguments t o  support our  claims. 

Continued use i s  made of the Principle of Optimality [12]. I n  Appendix 

B, t h i s  principle i s  used t o  formally derive a p a r t i a l  d i f f e ren t i a l  

equation (Issacs '  "main equation" [ 131 ) which will be wed i n  the next 

section. 

3.4 A Min-Fax Problem with a n  Unconstrained Disturbance 

It i s  well-known tha t  the linear-plant quadratic performance 

c r i t e r i a  minimization problem, i n  which 'the square of the control appears 

i n  the performance index, i s  one o f  the few general minimizatim problems 

i n  which an optimal feedback control solution can readi ly  be obtained. 

Since a min-max control must be feedback, it seems reasonable t o  f i r s t  

study the min-Tx analog of t h i s  minimization problem. 

Let the system t o  be studied be described by the d i f f e ren t i a l  

e quat ion 

t ~ o r  an example, ,see ~ 2 3  . 
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- -  k = A(t) - x + B(t) 2 + C(t) - V t e Cto3T) (3.15) 

where 5 is a n-vector describing the state of the system, 2 is an m-vector 

of controls and - v is an r-vector of disturbances acting on the system. 
- A(t), E(t) and C(t) are piecewise-continuous time-varying matrices on 
[to,'] with appropriate dimensions. It is assumed that 2 e Su and - 
,v e Sv where S and Sv are subsets of the set of piecewise-continuous - U 
i - 

vector functions defined on [to,']. 

The performance criterion to be used is ofthe form 

ll 
0 

.t 2 x'(T) - -  M x(T) 2 -  

where D , g2, €J and ,M are constant, symmetric matrices with appropriate -1 
dimensions; D 

semidefinite. 

Section 3 . 2 .  

and g2 are positive-definite and €J and - M are positive- 

The other aspects of this problem are as formulated in 
-1 

In the analogous minimization problem, the control is weighted in 

the performance index to insure the existence of a minimizing solution. 

Since in the min-max problem, the disturbance is presumed to maximize 

the performance index, it too must be weighted in the performance index 

if there is to be any hope for the existence of a min-max solution. The 

reason for the negative weighting is obvious since 2 maximizes. 

A pursuit-evasion problem which is basically the same 

mathematical problem as the one formulated above with 3 = 0, has been 

studied in [lq- With some minor variation, the results which follow 

are essentiallythe same as those in the reference. 

To study this problem it is convenient to use the min-max partial 

differential equation derived in Appendix B. Assuming that F(x(t),t) is 
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the min-max return for a process s ta r t ing  a t  time t e [to,TJ i n  s t a t e  

x_(t), one may write 
F' A x  + $ B u + % , C v + ~ [ x '  1 Q x + u ' g 1 u - ~ ' g 2 y ' ] }  

+ F t = O  (3.17) 

min - {-x-- 
ut3 su V e  sv - 

Performing the  indicated min-max operations one obtains 

u* = - D - l  B' -1 - - 

The inverses o f g l  and g2 exis t  since they are  both posit ive definite.  

Substituting the emreasions i n  (3.18) into (3.17), the result ing 

p a r t i a l  d i f f e ren t i a l  equation is 
1 1 

F' A 2 + z E' 3 E - 8'; 2 & + Ft = 0 -x 

where 
-1 D = B D - l  8' - C g2 2' - -1 - 

(3.19) 

The boundary condition fo r  (3.19) (see Appendix B) i s  

F(h(T),T) E 'z - x'(T) ,M x(T) (3.21) 

Consider as a possible form fo r  F (h ( t ) , t )  the expression 

F(x( t ) , t )  = $ P ( t )  x(t>; - P( t )  = - P'( t )  (3.22) 

From (3.21) it i s  clear  t ha t  the boundary condition w i l l  be sa t i s f ied  if 

- P(T) = E  (3.23) 

1 
2 -  If - x'(T) E(?) n ( T )  is the min-max return a t  time T e [to,l!J, then 

using (3.19) it i s  readi ly  established tha t  _P(t) must s a t i s fy  

(3.24) 
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The expression i n  (3.24) i s  immediately recognized as a Riccati 

equation. 

equation on a f in i t e  time i n t e r v a l  may not exis t  due t o  t he  phenomenon of 
c 

f i n i t e  escape time, i .e. ,  some of the elements of 2 may go t o  in f in i ty  

on the f i n i t e  interval [to,q. 

Kalman [30,31] has pointed out t ha t  the  solution t o  a Riccati 

If a t  some time tl [ to ,T)  a f i n i t e  escape occurs,’ t h i s  means tha t  

the min-max return approaches in f in i ty  as 7 approaches tl (assuming the 

return ex is t s  fo r  7 > t l ) .  I n  terms of  the performance index, a f i n i t e  

escape simply means tha t  the negative weighting o f 1  i s  not suff ic ient  

t o  insure a bounded maximizing disturbance; i .e. ,  a maximum with respect 

t o  2 does not exist  for  T s t l .  

It i s  of in te res t  t o  know under what conditions a f i n i t e  escape 

w i l l  not occur. 

exis t  on [ T , q  if the matrix 2 i s  positive-semidefinite on [T,T’J. 

Though sufficient,  t h i s  res t r ic t ion  on; i s  not always necessary as  

w i l l  be i l lus t ra ted  i n  an example below. 

galman [3O] has shown tha t  the solution of (3.24) w i l l  

To work examples analytically it is convenient t o  use the follow- r 
ing transformation [3O]. On the in te rva l  (T,T] where z ( t )  exis ts ,  l e t  

- P(T-t)  = g ( t )  g l ( t )  

where z(t) and x ( t )  are  nxn matrices sat isfying 

} 
- i = g Z + c p ;  - z(0) = ,M . - 
- -  ? = D _ Z - A Y ;  - -  - Y(0)  = 2 ( ident i ty)  

+The similari ty between a point at  which a f i n i t e  escape occurs and a 
conjugate point (from the Jacobi condition i n  the calculus of variations 
[ 213) has been noted i n  [In. 
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on (T,T]. 

- D may be solved using Laplace transfdrms. 

i n  obtaining the analytic solutions f o r  Example 3.4.1. 

Example 3.4.1 

The above equations are l inear  and f o r  constant A, 4 and 

This approach has been used 

Consider the system 

"=xz +u1 
% = a % + ,  

and the performance index 

Clearly 

Consider first the solution f o r  o! = 3/k. 

def in i te  fop t h i s  value of a. 

The matrix - D i s  positive- 

The c o r r e n d i n g  elements of the g 
matrix are  

where 1 = T-t .  Inspection of ~ ( h )  indicate& tha t  it i s  non-zero f o r  

a l l  1. Thus the elements of remain f i n i t e  for  t 8 [to,q. Rote tha t  

T may be inf in i te .  

Now consider the solution for  a =JZ. For t h i s  value of a, 2 i s  

posit ivesemidefinite.  The elements of the matrix are  



A ( A )  = cosh A 

It i s  c lear  tha t  ~ ( 1 )  > 0 fo r  a l l  A .  

f i n i t e  f o r  a l l  t 

The elements of - P w i l l  remain 

[t0,q provided T < w .  

As a f i n a l  example, consider the solution fo r  the case a = 0. For 

t h i s  case 2 i s  indefinite and there 

The elements o f  the  - P matrix are  

cos A)(cosh P12(A) = m[' 

i s  a poss ib i l i ty  o f  a f i n i t e  escape. 

A ( A )  = $[4 +  COS ~ ) ( c o s h J Z  1) +J2(sin ~ ) ( s i n h J 2  A)] 

The f i r s t  positive zero of ~(1)  occurs a t  roughly A 1 = 2.56. 

T < 2.56, the min-max problem with a = 0 has a solution. 

T > 2.56, no solution exis ts  due t o  the f i n i t e  escape a t  t 1 = T - 2.56. 

Thus fo r  

However, i f  

I n  addition t o  existence problems, it should be pointed out t h a t  

there i s  another aspect o f  the problem formulated i n  t h i s  secti3n 

which i s  undesirable from an engineering point of view. 

solution exis ts ,  from (3.18) the worst case disturbance i s  

Note t h a t  i f  a 

+ = D -1 C'P x (3.25) c -2 - - -  
Suppose the system i s  a t  r e s t ,  i . e . ,  -0 x = 0. The expression f o r  i n  

(3.25) implies t h e t  the worst case disturbance w i l l  be zero. Thuz i f  
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the system i s  a t  res t ,  the disturbance will f i n d  it mo,re profitable t o  

leave the  system a t  rest than t o  d i s t u r b  it. Though mathematically 

t h i s  i s  understandable, from a physical point of view it makes no sense 

a t  a l l .  The reason why i s  of the form shown i n  (3.25) i s  eas i ly  

traced t o  the negative weighting o f 1  i n  the performance index. 

while on the one hand t h i s  weighting i s  necessary t o  keep the worst case 

Thus 

disturbance bounded, on the other it leads t o  a meaningless resu l t  f o r  

If the disturbance is  not weighted i n  the  performance index, it 

must obviously be magnitude constrained by some other means. A logical  

way t o  do t h i s  i s  t o  assume that E i s  bounded a t  the  outset. 

Though t h i a  modification i s  both meaningful and in tu i t ive ly  

appealing, it leads t o  a considerably more d i f f i c u l t  type of min-max 

problem'than the  one considered i n  t h i s  section. This w i l l  become 

apparent from the  analysis which follows. 

3.5 A Min-Max Problem with a Magnitude Constrained Disturbance 

For the  problem studied i n  t h i s  section, consider the system 

described by 

- j ,  = A(t) 2 + b(t) u + c ( t )  v t Cto,Tl (3.26) 

where u and v are both scalars,  u being the control and v being a 

disturbance acting on the system. 

n-vector describing the s t a t e  of the  system and - A ( t )  i s  a piecewise- 

continuous nxn matrix defined on [t ,!FJ. 

continuous on [to,q. It i s  assumed tha t  u S and v Sv, where Su i s  

the s e t  of a l l  piecewise-continuous t i m e  functions on [to,T) and Sv i s  

the  set of piecewiae-continuous t i m e  f b c t i o n s  sat isfying 

As i n  the  l a s t  section, ~f i s  an 

The vectors b ( t )  and - c ( t )  are 
0 

U 
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where ,K is a constmt n-vector. 

form 

Consider a performance index of the 

(3.29) 
1 2  J(&, to, T; u, v) = lT $ u2dt + 5 E (x(T)) 

I n  a l l  other respects, the min-max problem formulated here i s  the same as  

the general min-max problem described i n  Section 3.2. 

A complete analysis of t h i s  problem i s  made here. I n  order t o  

describe the resul ts  it w i l l  be necessary t o  define several pertinent 

time 

Next 

functions. 

Let g ( t )  be an  n-vector satisfying 

(3 30) 
2 - k ( t )  = - - A’(t) g ( t )  + $ &‘(t) $t)] g ( t ) ;  - R(T) = E 

define the scalars e ( t )  and #( t )  as solutions of  
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i f  f ( t )  = 0 and 

e i ther  8 ( t )  > 0 o r  

R'(t) c ( t )  = 0 

Otherwise 

with {(T) = 0. The qcalar b( t )  i s  defined as  

A l l  of the above def ini t ions hold on [to,'FJ. Note tha t  ~ ( t )  and pf(t) 

are non-negative on the problem interval.  

above €'uuctions are independent of s ta te .  

Note also t ha t  a l l  of the 

Having defined the above functions, the  resu l t s  of the analysis 

may now be described. 

Theorem 3.1 

kt the general en-max problem be defined as i n  Section 3.2 

and l e t  (3.26) t o  (3.29) define the  specif ic  problem. The disturbance 

v a Sv is  magnitude constrained. 

- x ( t )  s a t i s f i e s  

If f o r  some t [to,TJ the s t a t e  

p ( t )  + ml 2 g ( t >  (3.35) 

then the following statements hold: 

1. The min-max return function P (x ( t ) , t )  - which i s  defined by 

F (z ( t ) , t )  = min max J ( z ( t ) ,  t, T; u, v) 
u u  su v a  sv 
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3. The wors t  case disturbance i s  of the form 

The proof of t h i s  theorem i s  given i n  Appendix C. 

Note that  since q may be 1 o r  -1, v+ i s  not unique. I n  view of the 

It should be observed, symmetry i n  the problem, t h i s  is  not unexpected. 

hDwever, that  the min-max value o f  the performance index i s  unique, as  

i s  the control u*(x(t) - ,t) . 
If the resul ts  of Theorem 3 . 1  represents the min-max solution when 

IR’(t) + e ( t >  2 c ( t >  (3.39) 

what i s  the solution fo r  those points i n  s t a t e  space fo r  which (3.39) 

does n o t  hold? 

such circumstances a min-max solution does not ex is t .  

Theorem 3.2 

The answer, which i s  somewhat surprising, i s  t ha t  under 

For the min-max problem defined by (3.26) t o  (3.29), i f  fo r  

some s ta te  x ( t ) ,  t e [ to ,Tl  , 
lR‘ ( t )  ~ ( t )  + e( t> l  c ~ ( t )  (3.40) 

t then there i s  no solution t o  the problem. 

The proof of t h i s  theorem i s  presented i n  Appendix C.  

On the surface, one would not expect t o  encounter any existence 

d i f f icu l t ies  with t h i s  problem since v i s  bounded and the problem time 

T - t  i s  f i n i t e .  Nevertheless, i n  regions o f  s t a t e  space where (3.35) 
0 

‘By no solution it i s  meant tha t  a min-max control u*(z(t) , t)  does not 
ex is t  for  a l l  points i n  s t a t e  space where (3.40) holds. 
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does not hold, min-max solutions do not ex is t .  There does not appear t o  

be any in tu i t ive ly  obvious reason why t h i s  i s  so. However, i n  studying 

the  proof of Theorem 3.2, one comes t o  suspect t h a t  the existence 

problem i s  i n  pa r t  due t o  the  fact  t h a t  the control i s  weighted i n  the 

performance index. This suspicion i s  jus t i f ied  by the  resul ts  of the next  

section i n  which the control i s  removed from the performance index and 

magnitude constrained. 

The following example should help t o  i l l u s t r a t e  the resu l t s  of t h i s  

section. 

Example 3.5.1 

Consider the  system 

x1 = x2 

x = u + v  2 

where 

Ivl 51 

The performance index i s  

1 2  2 T u  J(%, 0 ,  T; U, V) = J d t  + xl(T) 
0 

From equation (3.30) it i s  noted t h a t  the elements of - R sa t i s fy  

1 2  kl = 5 Rz 5 
1 
I 

% = - ? I . + ?  

It can be eas i ly  verified 

Because of the symmetric bounds on v 

e ( t >  3 0 

= 1  

= o  

( T l t  
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Using (3.32) 

With some effort, it may be determined t h a t  

r-0 f o r  T - t  tl 

s(t) [l + $(T-t)q* [ tl - 2(1  + $ T - t )  1 3 ) 3 (T- t )2  
1 f o r  T - t  2 t 

L 

where 
1 tl = - 56 

This problem w i l l  have a min-max solution f o r  a l l  s t a t e s  - x ( t )  i f  

T 2 tl since s ( t )  z 0 on [o,tl]. 

satisfying 

If T > tl, only f o r  the s t a t e s  

w i l l  a min-max solution ex is t .  Under these circumstances F, u* and * 
are given by the expressions i n  Theorem 3.1. If the above inequality 

does not hold and T >  t l t h e r e  i s  no min-max solution t o  the problem. 

I n  general, a control which minimizes the worst case value o f  the 

performance index i n  (3.29) cannot be found for  a l l  points i n  (x , t )  - 
space. Forthose s t a t e s  lying i n  regions of  s t a t e  space where a 

min-max solution does n o t  ex i s t  one would have t o  determine the control 

based on some other c r i t e r i a .  However, ra ther  than do t h i s ,  it seems 

more reasonable t o  consider a modification of the or iginal  problem: 

By removing the control from the performance index i n  (3.29) and 
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t h i s  problem disappear. This approach i s  taken i n  the next section. 

3 6 A Min-Max Problem with Magnitude Constrained Control and Disturbance 

I n  t h i s  section it i s  assumed tha t  the governed by the vector 

d i f f e ren t i a l  equation 

- i = A(t) + tJt) u + z ( t )  v t 8 cto,TJ (3.41) 

where u g Su and v e Svo 

same meanings as  i n  the l a s t  section. The constraint s e t  S i s  defined 

The symbols 5, A, 2, 2, u, v and Sv have the 

U 

as the se t  of all piecewise-continuous functions on [to,T] with 

magnitudes bounded by unity. For a performance index consider 

where 

I n  a l l  other respects the  problem t o  be studied i n  t h i s  section i s  the 

same as the  general min-max problem formulated i n  Section 3.2.  
1 

I n  order t o  describe the solution t o  t h i s  problem, several time 

functions must first be defined. 

I = 0 

Finally, define the scalar  s ( t )  as the solution of 

(3.46) 
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with g(T)  = 0. The' scalar  6 ( t )  i s  defined as 

1 
6( t )  = 'z [y2(t) - y1(t)]IJ$'(t) & (  - \R'(t) b ( t ) \  (3.48) 

A l l  of the above definit ions hold on [to,TJ. 
The symbols g, j8, 9, 5 and 6 have purposely been used in both t h i s  

section and the  l a s t  one t o  f a c i l i t a t e  comparisons. It should be 

pointed out that  these symbols represent similar quantit ies i n  the two 

sections, *the same quantities. 

As a first step i n  describing the solution t o  the min-max problem 

i n  t h i s  section, the following theorem i s  presented: 

Theorem 3.3 

?Let the general dn-max problem be as defined i n  Section 3.2 

and l e t  (3.41) t o  (3.43)"define -the%pecific problem. Both u Su 

and v '(t Sv are magnitude constraidd.  If for  'gome '*ec [[+i,q 
' (3.49) 

I 
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The proof o f ,  thid t h e o m  may be found i n  Appendix C. 

It i s  interest ing t o  note the s imilar i ty  between the  resu l t s  i n  the 

above theorem and those i n  Theorem 3.1. I n  bath cases, the  exgressions 

f o r  F and e. a p  of the same form. 

The important difference between the two problems become apparent 

when the case i n  whith (3.49) does n o t  hold ( i .e . ,  l€J’(t) x ( t )  + 6 ( t > l  

e c ( t ) )  i s  considefed. I n  studying the  analogous s i tuat ion i n  the 

previous problem (see (3.40)), it was concluded tha t  the min-max solution 

d i d  not exis t .  Here a more palatable resu l t  has been obtained as  

evidenced by the following theorem. 

Theorem 3.4 

A t  a l l  points i n  (Z,t) space sat isfying 

the min-max return F(z( t ) , t )  i s  given by 

V 
as the above inequality holds, $ the  chd€ce of  u 

w i l l  have no e f fec t  on the  value -df the ‘m;in-mak-return. 

Su and v 6 S 

A proof of t h i s  theorem i s  given i n  Appendix C. 

Theorem 3.4 indicates t ha t  i n  a region i n  s t a t e  space, the choice 

of control has no effect  on the worst case value of the system 

performance index. When the  s ta te  l i e s  i n  t h i s  regibn, ohe might 

consider choosing the control based on sobe secondary performance index. 

The following examples are presented t o  i l l u s t r a t e  the  resu l t s  o f  

t h i s  section. 
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Example 3.6.1 

Consider the system 

i - 5 -  v 

jcz'- 25 x1 - 2 x2 + V  + 2  u 

where 

Iul I1 

PI 5 

Let the  performance index be 

The control u is given by (3.51) whenever \g( t )  s ( t )  + e ( t ) (  2 s ( t )  

and i s  chosen t o  be zero otherwise. Data f o r  a t ra jec tory  s t a r t i n g  a t  

x = 0 and resKLtlng f'romthe dlsturbance forcing function v given by 

(3-52), is shown i n  Yigure 3.1. 
-0 

The magnitude o f  x1(3) i s  the worst case value; iue. j there  2s HB 

v e  sv which can r e su l t  i n  a larger  value f o r  Ix,( 3) 1. 
there i s  no admissable control ler  which w i l l  r esu l t  i n  a s m f l e r  worst 

In BddPtIon, 

c a k  value. 

3.6.2 

It is ihterest ing €0 consider the same problem as above with the 

ro les  of the control and the disturbance interchanged. Specifically,  

l e t  

i = x  - u  1 2  

I 
I 
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and 

As i n  the previous example, u i s  given by (3.51) for  I ( t )  z ( t )  + 9 ( t ) (  

2 s ( t )  and zero otherwise. 

given by (3.52) for  the ent i re  t ra jectory.  

The i n i t i a l  s t a t e  i s  s t i l l  zero and v i s  

The resul t ing curves f o r  

xl> u and v are  shown i n  Figure 3.2. 

It i s  immediately observed tha t  the f i n a l  value of xl(t) i s  zero. 

This means tha t  for  any disturbance bounded by unity, the controller u* 

w i l l  drive xl(T) t o  zero! Clearly no other controller can do bet ter .  

3.7 Summary 

The material presented i n  t h i s  chapter represents the resu l t s  of 

an investigation of min-max problems for  l inear  systems. Three problems 

have been studied, the major differences among them being i n  the form o f  

the  performance index used i n  each. 

I n  the f i rs t  problem the performance index contains a posi t ively 

weighted control and a negatively weighted disturbance. 

noted tha t  the min-max solution t o  t h i s  problem does n o t  always ex is t  

It has been 

due t o  the phenomenon of f i n i t e  escape time. A more serious 

cr i t ic ism of the problem i s  that  it leads t o  a form f o r  the maximizing 

disturbance (a l inear  function o f  s t a t e )  which makes l i t t l e  sense. 

I n  an attempt t o  avoid existence d i f f i cu l t i e s  and t o  obtain more 

meaningful resu l t s ,  i n  the next problem studied the magnitude of the 

disturbance i s  constrained. A performance index containing the in tegra l  

o f  the square of the control plus the square of the terminal value of a 

system er ror  i s  used. A surprising resu l t  i s  t ha t  the solution t o  t h i s  

min-max problem does not ex is t  for  a l l  points i n  s t a t e  space. 



.. 

I n  the third protrkem -rstudied, both the eontrdl and the disturbance 

are  magnitude constrained. 

terminal value of a system error.  

has been presented. 

The performanee index i s  the square of the 

A coIlIplete solution t o  t h i s  problem 

It was shown tha t  i n  some regions of s t a t e  space, 

the choice of c o n t r o l  has no effect  on the min-max value of the 

performance index. 
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CHAPTER 4 

co~cLusIoN 

4.1  Summary and Conclusions 

I n  the preceding chapters, two problems ar i s ing  from the worst 

case disturbance approach have been investigarW. I n  the f i rs t  of these, 

the e r ror  analysis problem of Chapter 2, the & a c t  has been t o  determine 

the  worst case (maximum) value of a system pwformance index (a quadratic 

function of s t a t e  evaluated a t  a fixed time) due t o  a bounred d i s t u r b a m  

act ing on a general l inear  system. 

problem hae been t o  re la te  this general per-fo-rmance index; to  a speci'al 

one f o r  which the corresponding optimal (worst; gc8$e) return function 

could be found. 

contribution of t h i s  work. 

general e r ror  analysis problem can be solved by maximizing the re'turn f o r  

the specialpr3blem with respect t o  t h e  components of a vector o f ' m i t  

length. 

The approach taken in ' audy lng  %hi$ 

This has l e d  t o  what is undoubtedly the major 

It has been Ehown (Theorem 2.3) t ha t  .t& 

I n  addition t o  simplif5ring t h e  problem and providing fur ther  

insight  i n t o  i t s  nature through a geometric interpretation, t h i s  

contribution has led t o  several other r e su l t s  worthy Of'mentibn. F i r s t ,  

the existence of a maximizing solution i s  c lear ly  established. Second, 

the question of what the solution i s  on a singular surface i s  completely 

answered. Third,  the  relationship between a loca l  maximum of the  return 



function F and a solution sat isfying the necessary conditions of the 

Maximum Principle (Theorem 2 . 1  and 2 . 2 )  i s  made clear .  

From the resu l t s  presented i n  Chapter 2 ,  it has been noted t h a t  F 

i s  a multimodal function, To determine the global maximum of t h i s  

function with a reasonable amount of computation, an e f f ic ien t  loca l  

hill-climbing teahnique i s  required. 

I _  a qonvex function, it has been possible t o  develop an algorithm i n  

which convergence t o  a loca l  maximum i s  guaranteed. 

t h a t  the  cost of computation per  i t e ra t ion  i s  small because no integration 

By recognizing tha t  the return F 

It has been noted 

i s  required. 

Chapter 3 has been devoted t o  a study of the min-max problem. 

problem has been t o  determine a feedback controller having associated 

with it the smallest worst case value of a prescribed system performance 

index. 

problems inwlving l inear  systems and three different  types of 

performance indices. 

t h a t  a solution might not ex i s t .  

t h a t  the problem leads t o  a meaningless form fo r  the worst case 

disturbance. 

second problem f o r  s t a t e s  lying i n  certain regions of (5 , t )  space. 

the th i rd  problem studied, a complete min-max solution has been presented 

The 

The chapter contains the resu l t s  of an investigation of  min-max 

For the f irst  o f  these problems, it has been noted 

I n  addition, it has been pointed out 

Unexpectedly, existence d i f f i cu l t i e s  a lso occurred i n  the 

For 

A survey o f  the l i t e r a tu re  indicates t h a t  there a re  a significant 

number o f  results fo r  d i f fe ren t ia l  games a t  the two ends of the research 

spectrum. A t  one end there i s  an elaborate general theory, as evidenced 

by the work reported i n  C14-163. Although t h i s  theory i s  o f  great value 

i n  providing the basic tools needed t o  study d i f f e ren t i a l  games, it does 
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not lead t o  any simple method f o r  actually solving problems. 

A t  the other end of the spectrum, there are a number of specific 

numerical e x q l e s  which have been solved [l3,2O]. 

examples are most helpful i n  providing insight into the nature of the  

Though these 

d i f fe ren t ia l  game, they are too specific t o  be of general use t o  the 

control engineer. 

The resu l t s  reported i n  Chapter 3 l i e  somewhere between these two 

extremes. hnphasis hae been placed on the  problem of determining a 

min-max controller fo r  a fleneral linear system. Since t h i s  problem i s  

quite d i f f i c u l t  and since the l i t e ra ture  contains few resu l t s  a t  t h i s  

level,  any def ini t ive statements about the solutions of min-max problems 

are  considered t o  be worthwhile contributions. 

cases i n  point. 

development of a general min-max theory fo r  l inear  systems. 

Theorems 3.1 t o  3.4 are 

These theorems should prove useful i n  furthering the 

4.2 Recommendations f o r  Further Study 

Since the proof of Theorem 2 . 3  i n  Chapter 2 does not depend on the 

assumption tha t  the plant being analyzed i s  l inear ,  the theorem also 

holds for  nonlinear systems. 

must find the retur% function F(&, to, g) .  

formidable problem fo r  a general nonlinear system, it is conceivable 

t h a t  fo r  special  classes o f  systems (i .e. ,  possibly systemp with a 

single nonlinearity of a particular type) t h i s  return car) be 

determined. 

systems would be of significant value, t h i s  problem i s  one which fur ther  

research should be undertaken. 

Of course, t o  make use of the theorem one 

Although t h i s  $s a 

Since the  extension o f  the  resu l t s  of ChaHer 2 t o  nonlinear 



A second problem worthy of investigation can be described as 

follows. Consider the :f'unctionals 

and 

r where g 8 Q (see Chapter 2 for definit ions o f  g,S, _M and or) and - x ( t )  

i s  the s t a t e  of the system described by equation (3 .41)  i n  Section 3.6. 

Theorems 3 . 3  and 3.4  may be used t o  determine the min-max return 

It i s  c lear  f r o m  Theorem 2 .3  t ha t  

when b ( t )  z 0, since the result ing problem involves only maximization 

with respect t o  v. Using arguments similar t o  those used i n  the proof 

o f  Theorem 2.3, one may show tha t  (4.3) a lso holds fo r  the case 

- b( t )  4 0, c ( t )  E 0. 

neither b(t) nor - c ( t )  are zero; i . e . ,  f o r  the min-max problem. 

an answer t o  th i s  question would represent a significant contribution t o  

the general theory of min-max problems fo r  l inear  systems, it is 

suggested as a subject for  f'urther study. 

The obvious question i s  whether (4 .3)  holds when 

Since 
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AF'PEXiIX A 

PROPERTIES OF h( t ,g )  

I n  t h i s  appendix, it w i l l  be shown tha t  the vector A(t,a) - defined 

i n  Chapter 2 i s  continuous on [t ,I) and sa t i s f i e s  the adjoint equation 

of the Maximum Principle. 
0 

A . l  A Continuous Time-Function 

I n  t h i s  section it w i l l  be shown tha t  A(t,a) - i s  continuous on 

[to,'p) Using (2.35), we may write 

A(t,_a) = g ( t )  9 IY(t)l + !J(t,a>-J .sgn[l,Y(t>] (A -1) 

where 

y ( t >  = g(t,g) g ( t )  g + e( t ,a )  - (A-2) 

S ince ,P( t ) ,  a, y ( t j  and g(t,g) are a l l  continuous on [t ,q , t o  show 

tha t  A( t ,a )  - i s  continuougit  w i l l  be suff ic ient  t o  show'that e i ther  

Y(t) 2 0 (A -3)  

0. 
- 

ai, 

It follows from t h i s  expression that 

$ ( t )  2 0 whenever y( t )  2 0 
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and 

$(t) 0 whenever y ( t )  < 0 

These inequalit ies imply tha t  y ( t )  must s a t i s @  e i ther  ( ~ . 3 )  o r  (A.4) 

n u s  A(t,g) i s  continuous on [t ,TJ . 
0 

A.2 A Solution o f  the &ximum Principle Xquations 

I n  view of  the discussion i n  the l a s t  section, it may be eas i ly  

expression i s  zero. 

t ha t  

Using t h i s  fac t  and equation ( A . l )  it i s  c lear  

A(t,g> = - - A ' ( t )  A ( t r C )  (A. 7) 

Thus A(t,g) satisfies! the adjoint equation of  the Maximum Principle. 
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APPENDIX E 

THE MIN-MAX PARTIAL DIFFERENTIAL EQUATION 

I n  this Bppendix, a par t ia l  differention equation similar t o  the 

c l a s s i ca l  Hamilton-Jacobi equation of the calculus of variations [21] 

i s  derived. The resu l t  obtained i s  not  new ( i .e .  , see [133) and the 

derivation i s  not rigorous. Nevertheless, a derivation based on the  

Principle of Opti&ality [EJ i s  in tu i t ive ly  appealing and w i l l  therefore 

add fur ther  t o  the  understanding of the min-max problem. 

The development s t a r t s  with the def ini t ian o f  a min-malt return 

function. With reference t o  the problem formulated i n  Section 3.2 ,  

d e f i n e  F(x_(t),t) as the min-max return f r o m  a procesE s ta r t ing  a t  time 

It i s  understood tha t  2 6 

That i s  

Su and 1 e Sv. We s h a l l  assume tha t  F, F, g - - 
and are piecewise-continuous time functions along a min-max trajectory.  

The eq res s ion  f o r  P(%(t ) , t )  - above, may also be written as 



and 

Since I1 i s  independent of v(7) for T e [t + A,Tl we may write 

Now consider u ( T 2 ) ,  T2 c i t + A , q  . 
of the problem, ~ ( 7 ~ )  i s  t o  be a function o f  ~ ( 7 , ) .  

- u(T2) has knowledge of the past h i s tory  of - 1  v(7 ), T1 e [t,t + A]. 

the min operation f o r  ~ ( 7 ~ )  and the max operation fo r  ~ ( 7 ~ )  may be 

interchanged. The resul t ing expression i s  

As stipulated i n  the formulation 

This means tha t  

Hence 

But since I1 doesn't depend upon u(7 ) we may write - 2  

The expression i n  (B.7) may be taken as a statement o f  the Principle of 

Optimality [ 123 fo r  the min-max problem. 

From (B.2) through (B.4) and (B.7) it i s  c lear  t ha t  

. -  .. 
Since g, F and F are piecewise-cmtinuous we may expand the r ight  side 
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where 

Lim - OA2 = 0 (B. 10) 

We may now write 

Dividing by A and then le t t ing A go t o  zero 

= g(2, t, ZY 1) + Ft 

the  expression i n  (B.13) may now be writ ten as 

(B.14) 



The expression i n  (B .17)  i s  a boundary condition f o r  t h e  min-nax 

p a r t i a l  d i f fe ren t ia l  equation. 
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APPENDIX C 

I n  t h i s  apbendix, .the proofs of Theorems 3.1 through 3.4 are 

presented. 

Section 3.5 and 3.6 of.'Chapter 3. 

' h e  notation used here i s  consistent with tha t  used i n  

C.l Proof of Theorem 3 . 1  

A t  l ea s t  two different  approaches may be used t o  prove Theorem 3.1. 

The first wbuld involve showing that the return F(x( t ) , t )  - defined i n  

(3.36) does indeed sa t i s fy  the min-max p a r t i a l  d i f fe ren t ia l  equation 

presented i n  Appendix B. Statements 2 and 3 o f  the theorem would then 

follow directly.  I n  the proof that follows, a somewhat different 

@poach is  used because it is felt tha t  it will lead t o  a be t te r  

understanding of the problem. 

Let  us s t a r t  by making several simplifying transformatiohs. F i r s t  

define the scalar y ( t )  as 

where - R ( t )  and e ( t )  are defined i n  (3.30) and (3.31) and B( t )  is a 

scalar  satisfying 
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and 

I on [to,q. Let S+ V be the set  of a l l  piecewise-continuous time functions 

on [to,T] such tha t  i f  4; then 

\;(q 1 1 (c. 5 )  
- 

Note tha t  v Sv v e S y .  A similar statement holds f o r  u and <. 
Let  

It i s  eas i ly  verified by different ia t ing the expression i n  (C.1) t h a t  

j, = p ( t )  2%)  b(t) u + B(t) g ( t )  c(t) '3 (c.  7) 
It For convenience we sha l l  re fe r  t o  and '5 as a control" and a 

disturbance" respectively. If we next define the functional tt 

(c.8) 
L - -  
J ( d t o ) ,  to, T; u, v) = J(x(to), to, T; u, v) 

I 

I 
I 
I 
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The minimizing control ;*, and the haximizing disturbance % may be 

determined f o r  t 8 [T,!FJ c [to,T) by considering the return - -  - 
F ( Y ( ~ , T )  =- min - ux T ( Y ( ~ ) ,  T, T; u,’ V) 

u s  4; v e  s;; 

(c.11) 

This follows from the Principle o f  Optimality [123. 

fhnctional 

Now consider €he 

- e -  

I ( Y W ,  7 ,  T; u, v) 

! 

Note t ha t  for  T = T 
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Assume now tha t  the minimizing control ;* i s  i n  a set of controls 
* 
U 

4-6 % having the following properties: 

on [to,T'J. This assumption w i l l  be jus t i f ied  shortly. 

Let z(t,y(,)) represents a solution of (c.7) on [T,TJ using any 
- *  
u e S-- and any 5 

z(T,y(T)) = y(7). 

and any u %. 
Statement C. 1.1 

E+. 

Let z*(t,y(7)) be a solution of (C.7) using v = e 
The i n i t i a l  point of t h i s  t ra jec tory  i s  taken as U V - -  

* 
We can now make the following statement. 

If e e, then 

( c .  18) 

Note tha t  % is not unique since q may be 1 o r  -1. To prove t h i s  

statement we f i r s t  note tha t  

IZ*(t ,Y(m\ 2 JZ(t,Y('t))( (c.20) 

fo r  a l l  t 

an inspection o f  (C.7). 

(C.17) t ha t  

[','I"). This follows d i rec t ly  from Property 1 i n  (C.17) and 

It i s  clear  from (C.20) and Property 2 i.n 

T G 2 ( z , t l  dt T G2(g*,t) dt - max s 2 = s, 2 " € 4 3  
(c.21) 

* 
f o r i ;  e s;;. 
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Again using (c.20) and noting the form of > i n  (C.L9), it i s  seen tha t  

The resu l t s  elcpressed i n  (c-18) and (C.19)  follow d i rec t ly  from (C.21) 

and (C.22). 

- Henceforth we shal l  write (C.7) as 

and 

(C .24 )  

It ia possible t o  Wite 7 a s  

I T  * -5 Gi i. &'(t> b(t) a(t) .Egn(o ,dY d t  (c.25) 
& . r  

This may be-irerified using the. kame arguments t ha t  were used t o  prove 

the ident i ty  i n  (C.15). 

Consider €he control 
- 
U t -  - R ' W  .k(t) a(t> sgn(o,y) (c.26) 

If t h i s  contrql i s  substituted into (C.23), the resul t ing differentj ial  

equation i s  

Consider now some region R i n  (y,T) space. We sha l l  say t h a t  y(T) e R 

if a forward solution of (C.27) s tar t ing a t  y(7) exis t s  on (7,T).  This 



04 

leads t o  the following statement. 

Statement C.1.2 

If y(7) @, then the minimizing control u* i s  

u* = - - R ’ W  a’(*> Sgn(0,Y) 

on (T,TJ and 
- - 
F ( Y ( T ) ,  7 )  = J(y(T), 7, T; <*, 

(c.28) 

These resul ts  may be proved as follows. Since the only term i n  
- 

(c-25)  which depends upon < i s  the integral ,  and since u* clear ly  

minimizes t h i s  integral  ( i . e .  I the m i n i m u m  value of the in tegra l  i s  
- * 

zero), u* must be the minimizing control. 

previously assumed. 

Note t h a t  <* S-, as 

Our next effor t  w i l l  be t o  determine the  region R .  Let p ( t , y ( T ) )  

represent a forward solution of (c.27) on C T , q  s t a r t i ng  at y(7). 

Suppose t h a t  t h i s  solution ex is t s  on (7,T) where z e ‘(7,TJ. 

yK(T,y(T)) f 0, inspection of  (C.27) indicates t ha t  p ( t , y ( T ) )  w i l l  

ex is t  on an interval  t o  the r igh t  of  t. 

If 

Suppose now t h a t  p ( T , y ( ~ ) )  = 0. 

For a solution t o  ex is t  beyond t h i s  point there must be an in te rva l  

(T,i) of f i n i t e  length on which e i ther  g ’ ( t )  d(t) e 0 (implying t h a t  

~ ( t , y ( ~ ) )  a 0 on (;,;I> o r  1s’(t)  &(*)I =r a ( t ) ( g ‘ ( t >  k( t>)2,  (implying 

tha t  l p ( t , y (T) ) l  f 0 on (t,:), the  sign of ysC depending on the choice 

of q. ) . This statement follows d i rec t ly  from an inspection of (C.27) 

If t h i s  statement holde for  a l l  

P ( t , y ( T ) )  w i l l  ex i s t  on [T,T. 
[T,T) where F(z ,y (T) )  = 0, then 
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i 

This claim may be! 'easily proved f r o m  an inspection of  (3.32) and (c.6) 

~ h u s  fdy any vcilue of Y(T), T 6 [tl,TJ, a solution p ( t , y ( T ) )  w i l l  exis t  

on [r,Tf. Define the functi6n n ( t )  on [tl,TJ as 

n ( t )  I 0 (e. 31) 

lY(4l  2 n ( 4  (c-32) 

It i s  obvious tha t  y(T) R on [tl,Tj i f  

Now consider a second interval [tz jt,) on which neither 1 nor 2 i n  

(C.30) hbld. That i s  

(c. 33) 

on [t29tlJ. 

of ( c . n )  t o  ex is t  on the en t i re  interval  (t ,t ), the  forward solution 

p ( t , y ( T ) )  f 0 for  7 

7 6 [tzi$i,) as the smallest value of \y(T)I f o r  which p ( t , y ( T ) )  ex is t s  

on (%, t i ) ,  

Thus n(?) mdg be ?ie$edine!d otl [tz,tl) by &olv in& (c.27) brlcktsar'da i n  

time fkbm tl tSith y(t,) S i n k  q- ri 4 12 t h w e  are  two solutions. 

We know fram th& preceding discus6io~l that f o r  a solution 

2 1  

[t2,tl) and t 8 (T,tl)* Define n(T) for  each 

mis smallest Vahe Qf \ y ( ~ ) !  w i l l  fi?eult i n  p ( t l j y ( ~ ) )  = 0. 
' 7  

0. 

We are  interested i n  the non-negative one. 

i s  the *ti-negative backwafii ealution of (c.27) s ta r t ing  a t  tl with 

That is ,  on [t2,tl), n(.) 

1 1  

y(tl) = 0 .  ~ h n s  f o r  T 6 [t2,q, y(7) 6 a i f  

\Y(q 2 n ( d  (c. 34) 

I *  
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Now consider a third in te rva l  [t t ) on which e i ther  1 o r  2 i n  
3’ 2 

(C.30) holds. 

of (C.27) exist  on (T,t2) for a l l  y(7), T e [t 3’ t 2 ) *  

y(7) 6 n, solutions must ex is t  on (T,!lTJ. 

y(7) i s  such that 

From previous considerations, it i s  known that solutions 

However, f o r  

Thus we must in su re  t ha t  

\yx(t2,Y(7) 1 I 2 dt2> (c .  35) 

Define n(7) on [t ,t ) as the  smallest value of ly(7)l f o r  which (C.35) 

holds. 

(C.27) s ta r t ing  a t  y( t2)  d n(t2) .  

3 2  
Thus on Et ,t ), nt?) i s  the non-negative backward solution of 3 2  

It i s  clear  tha t  y(7) R i f  

\ Y W \  2 n ( 4 ,  7 6 [t3,Tl * 

Continuing i n  t h i s  way, one can define n ( t )  fir a l l  t [to,!lTJ. 

We present the resu l t  as  f O l l o w S :  

Statement C. 1 4 3  

For t c [t0,TJ., Y W  c R if 

l Y ( t ) l  2 n ( t >  ( c *  36) 

L 

and 

n(T) = 0 (c. 38) 

The d i f fe ren t ia l  ,equation fo r  n ( t )  fallows d i r e c t l y  Yrom the preceding 

discuss ion. 

~ 
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I 

- -  

A typical  curve f o r  n ( t )  is shown i n  (y,t) space i n  Figure 6.1. . -  
The scalar  6 ( t )  appearing i n  the figure i s  defined i n  equation (3.34). 

The thick l i ne  represents n ( t )  and the th in  l ines  are  y ( t )  t ra jec tor ies  

i n  R. 

the  t-axis,  and also represents a boundary o f R .  

The dashed l i n e  i n  the figure i s  the  mirror image of n ( t )  Selow 

It may be eas i ly  determined tha t  

where s ( t )  i s  defined i n  (3.33). 

(c .6 ) ,  it i s  clear t ha t  the claims i n  Theorem 3.1 follow d i rec t ly  from 

Statements c.1 t o  c.3. 

Using t h i s  fact  and equations (C.l) t o  

C.2 Proof of Theorem 3.2 

TO prove Theorem 3.2, it must be shown tha t  fo r  a l l  y(T) i n  the  

coqlement of R, a min-max solution does not exis t .  I n  Figure C.l, the 

in t e r io r  of regions I and I1 represent the complement of R .  I n  the 

proof it will be assumed that y(7) i s  in  Region I. 

can be given fo r  points i n  Region 11. 

An analogous proof 
\ -. 

Let us assume %hat there exis ts  a min-max t ra jec tory  p ( t , y ( T ) ) ,  

s ta r t ing  a t  y(T) which is  i n  Region I.+ We claim tha t  

y)c(t,;y(7)) = 0 (c. bo) 

If p ( t , y ( T ) )  remains i n  Region I on (T,t ), then it clear ly  must go 

through the  point y(t,) = 0. 

tl, it must intersect 

min-max t ra jectory which goes through the point y(tl) = 0 .  

4 
If the tl.8jectoPy leaves Region I p r io r  t o  

a boundary of  the region. Each boundary is a 

Thus 

p( t l ,y (T))  must also go through t h i s  point, proving tha t  (C.40) i s  correct. 

'It W i l l  be shown that t h i s  assumption resu l t s  i n  a contradiction. 
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Now consider the return 

It follows from the Principle of Optimality, (C.40), and (C.29) t ha t  

We now claim tha t  there must exis t  a T suf f ic ien t ly  close t o  t so tha t  1 

P ( t , Y W )  f 0 (c.43) 
on (T,t,). 

P ( t , y ( T ) )  I 0 on t h i s  interval,  using the following argument. 

P ( t , y ( T ) )  E 0, then from (C.7) 

To prove t h i s ,  we sha l l  first rule  out the poss ib i l i t y  t ha t  

If 

- R ' ( t )  k(t)  L* -t R'(t) d ( t )  3 5 0 (c.44) 

Since ;* cannot be a 6 c t i o n  of ;* i n  a min-max problem, (C.44) will 

hold only if - R ' ( t )  b ( t )  u* E 0 and g ' ( t )  d ( t )  % e 0. 

equation (C-42), it i s  c lear  that  

Referring t o  

Inspection of (C.37) indicates t ha t  g ' ( t )  g ( t )  

suf f ic ien t ly  close t o  t Thus % 0 on (T,tl). But an inspection of  

(C.7) clear ly  indicates t ha t  some other choice f o r  7, say v = 1, would 

r e su l t  i n  a non-zero (positive) value f o r  the in tegra l  i n  (C.45). Thus 

+ I 0 cannot be a maximizing disturbance, and p ( t , y ( T ) )  a 0 cannot be 

0 on (T, t l )  f o r  7 

1' - 

- 
a min-max t ra jec tory  on (T,tl)* 

Next we r e c a l l  t h a t  f o r  3 and > t o  be admissible, they mu& be 

piecewise-continuous time -functions. 

t ha t  there  must ex i s t  a 7 suff ic ient ly  close t o  tl f o r  which (C.43) holds. 

It follows from t h i s  observation 

I 



For the remainder of the  proof, it w i l l  be assumed tha t  

y"(t,y(T) ) > 0 on (T,tl) An analogous proof can be given f o r  the case 

y"(t,Y(,)) < 0. 
.f 

Since p ( t , y ( T ) )  > 0, it follows from equations (C.7), (C.40), and 

wr i t ten  as 

i = s ( t >  g ( t )  b ( t )  u + B(t) Ig ' ( t )  g ( t ) l  (c.46) 

The control ';* may be determined by minimizing the in tegra l  

subject t o  (C.40) and (c.46). 

s a t i s fy  the necessary conditions o f  the Maximum Principle [6]. 

the  principle,  we f i r s t  form the Hamiltonian finction 

If <* i s  a minimizing control, it must 

To apply 

+ 1 B(t) g ( t >  b ( t )  ii + 1 s ( t >  1s' ( t >  g ( t )  I (c.48) 

where 

then it i s  necessary tha t  it minimize H a t  each instant  of time. 

implies t ha t  

i s  a multiplier t o  be determined. If i* is a minimizing control, 

This 

The multiplier 1 sa t i s f i e s  

(c.49) 

- 
= - Hy(y, u*) = - (g' ( t )  b,(t> )h 

Using (c.2) it is clear  t ha t  

(c. 50) 

where C i s  a constant of integration depending on 7 .  Thus 

I 
I 
I 
I 
I 
1 
I 
1 
I 
I 
1 
1 
1 
I 
1 
I 
I 
1 



and 

must hold on (T,tl) fo r  T suff ic ient ly  close t o  tl. 

from (c.53)' t ha t  

It also follows 

But from ( c , ~ )  and (3.32) 

and 

be Verified thdt  

on (T, t l )d  

determined tha t  

goting %hat y(t,) = 0 and 

a ( t >  

using 



Since €l(t), b(t), ,cl(t) and @(t) are continuous, it follows from (C.37) 

From (c.60) and (c.61). it i s  

on ( T , t l )  for 

(c.54). Thus 

T suff ic ient ly  

the theorem i s  

(c.61) 

close t o  tl. 

proved. ' 

This i s  a contradiction of  

C. 3 Proof of Theore@ 3 . 3  

The proof of  t h i s  theorem i s  based on the same type of argument 

used t o  prove Theorem 3.1. F i r s t ,  several simplifying transformations 

I 
I 
1 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 

are made. 
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Let 

where $(t) and O ( t )  are defined i n  (3.44) and (3.45). Next define as 

5 y2 1 (c. 65) 
Y , ( t )  - +)' 

( (t) + y l ( t ) )  ( 2 - 
v =  (v - 

on [to,!TJ. 

on [to,!TJ such tha t  if  

Let 9- be the se t  of a l l  piecewise-continuous time functions 
V 

e S-, then 5 1. Note tha t  v 8 Sv c- v e 9;;. 
Define the vector 

- d ( t )  = 5 (y2(t)  - y l ( t ) )  &) 

on [to,!TJ* FinalXy, define the functional 

(c.66) 

It is- eas i ly  verified t h a t  z ( t )  sa t i s f ie=  

i = R'(t) b ( t )  u + - R ' ( t )  - d ( t )  ( c .  69) 

Our objective i s  t o  d e t e r ~ n e  the return function i?(y(~), 'r) which 

s a t i s f i e s  

To do th i s ,  we sha l l  work backwards from time T. 

an in te rva l  [tl,Tl on which Ig(t)' d ( t ) l  - IR(t) b ( t ) l  > 0.' Let  tl 

be the smallest time on [t ,TJ f o r  which t h i s  is t rue.  

(c.68) t o  (e.70) clear ly  indicates t ha t  

Suppose tha t  therk is 

Inspection of 
0 

'An analogous pro03 may be given for  the case 1s' ( t )  - d ( t )  1 - 
IR'(t) b ( t ) l  < 6 on pl,g 



- 
vw = sgn(o,g’(t) d(t)) sgn(q,z(t)); q = 1 o r  -1 ((=a 71) 

and 

u* = - sgn(o,g‘(t) k(t) z(t)) (c-72) 

on t h i s  interval. 

7 e [tl,q, does not change sign on (7,T) .  

Note t h a t  the  resul t ing min-max t ra jec tory  z*(t,z(?)), 

Since 

z(T) = z(T) + sT [lg’(t> d(t)lsgn(q,z*) 
7 

- \g(t) k(t)lSgn(O,Z*)] d t  (c. 73) 

it is readi ly  established tha t  . 

(c. 74) 
- 1 2  
F(z(T),T) = z z ( T I  + a<T>(z(T>I  + $ 8 ( T )  

where P(T) i s  defined i n  (3.46). 

indicates t ha t  s ( t )  I 0 on [%,TJ. 

\ z ( ~ > l  2 5 ( ~ > ,  7 e [tl,q 9 then u*, v* and F are  given by (C.Tl), (c.72) 

and (C.74). 

An inspection of  equation (3.47) 

Thus we have shown t h a t  if 

Now consider a second in te rva l  [tz,tl) on which 

fp‘(t) b ( t ) l  - Ig‘(t) cl(t)l 2 0. 

Principle o f  O&imality tha t  

It follows from (c.74) and the 

f o r  a e [t2,tl). If I Z ( T ) I  is suf f ic ien t ly  large,  it i r s - c ~ e a r  from 

(c.69) t ha t  for  any admissable u and v, the resul t ing t ra jec tory  

z(t ,z(T)) will not change sign on (T,tl). 

inspection of (c.69) and ( c . 7 5 )  clear ly  indicates t ha t  

c 

Under such circumstances, 

- 
fl = sgn(o ,g ( t )  g ( t ) )  sgn(q,z) 

u* t - sgn(o ,g ( t )  k(t>) s@;n(o,z) 

and (c. 76) 
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Of course, we must insure tha t  I z ( T ) \  i s  large enough EO that z*(t,z(T)) 

does not change sign of (T,t1). 

\z(T)/ fo r  which t h i s  i s  so i s  the one which Will resu l t  i n  z*(tl ,z(T))=O. 

Thus by computing the non-negative, backward solution of (c.69) using 

u* and > as given i n  (c.76), and s t a r t i ng  a t  z(t,) = 0, t h i s  smallest 

value f o r  I z ( T )  I can be found. It may eas i ly  be seen f r o m  (3.47) t ha t  

t(t) i s  t h i s  backward solution on (~,t,]. 

It i s  clear  t ha t  the smallest value o f  

This argument may be continued on successive intervals  where 

I R ' ( t )  - d ( t ) l  - - 1R'(t)  b ( t ) l  - i s  ei ther  posit ive o r  non-positive u n t i l  the 

i n i t i a l  time to i s  reached. The end resu l t  i s  summarized as  follows. 

If f o r  7 6 [to,TJ, Iz(T)I 2 5(7), then u*, fl and ?(z(T),T) are given 

by equations (c.76) and (c.77). From t h i s  resul t ,  and equations (c.64) 

t o  (c.66), it i s  clear t ha t  the  theorem has been proved. 

- 

c.4 Proof of Theorem 3.4 

To prove t h i s  theorem, it i s  convenient t o  re fer  t o  Figure C . l .  

If n ( t )  and y ( t )  are replaced by g ( t )  and z ( t ) ,  the  figure can be used 

t o  represent ( z , t )  space.t 

the thick s o l i d  and dashed l ines,  u* and 3 and F (z ( t ) , t )  are given by 

Theorem 3.3. The l igh t  l ines  i n  the  figure represent min-max 

t ra jec tor ies  . 

For values of  z ( t )  lying outside of o r  on 

(z , t )  space the boundary for Region I1 would be determined by the  
two t ra jec tor ies  arriving a t  y(t ) = 0 rather  than the two arriving a t  

y(t,) = 0 as shown. 
5 

This follows from equation (3.47). 
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We are  now primarily concerned with points which l i e  i n  Regions I 

'- 

and 11. 

theorem can be given f o r  points i n  Region 11. 

Let  us assume that z(7) i s  i n  Region I. A 

It i s  claimed t h a t  f o r  any admissible u and T, 

t ra jec tory  z(t,z('F)) must go through the point 

Z ( t l , Z ( ' F ) )  = 0 

provided tha t  u* and > given i n  (c-76) are  used if 

leaves Region I. The reasoning here is  the  same as 

s i m i l a r  proof of the 

the  resul t ing 

(C. 78) 
the  t ra jec tory  

tha t  used i n  the  

proof of Theorem 3.2.  

it c lear ly  must go through the point z(tl) = 8.  

If z(t,z('F)) remains i n  Region I on (T,tl), then 

If the t ra jec tory  

leaves Region 

each boundary 

expression i n  

I p r io r  t o  t i m e  tl, it must in te rsec t  a boundary. 

is a min-max t ra jectory going through z ( t  1 ) = 0, the 

(C.78) must hold. 

Since 

We may use the Principle of Optimality t o  write 

Using (C.?8), it i s  c lear  t ha t  

Note t h a t  tl i s  the first zero of ~ ( t )  on the  in te rva l  ['F,TJ. 

proves the theorem. 

This 


